image_pdfimage_print

In an era where facts no longer matter, consequences still do

Over the last few years, we have written extensively about the strength of peoples’ beliefs and how difficult it is to change them.  In spite of this, I thought we were making progress with a push to more evidence-based decision making.  For something as polarizing as nuclear power, facts-based decision making is critical to increasing support.  (I understand the paradigm of fear of radiation is more emotional than fact based and I agree that we need to appeal to emotions to create the change we need – but let’s leave that to a future discussion.  In any case it certainly doesn’t hurt to have the facts on your side.)

With the populist surge in 2016 we have seen an accompanying rise in complete disregard for facts; all the way to the propagation of absolute lies (or “alternative facts”) to support peoples’ beliefs.  I don’t want to get into a political discussion nor take sides on right versus left.  What I do want to do in today’s post is to discuss something more fundamental – i.e. that although we are free to believe what we want – that beliefs have consequences – and that consequences matter.

So, let’s look at what happens when countries believe they can eliminate nuclear power from the mix and replace it with more wind and solar power.  Of course, I am talking about Germany.  Reducing carbon emissions is a reasonable goal as evidence (alternative facts notwithstanding) shows that climate change is impacting our environment and has long-term implications for our entire society.  On the other hand, removing a low-cost low-carbon source of energy like nuclear power because of safety concerns is based on a strong element of fear rather than evidence.  In fact, Germany’s nuclear plants are likely some of the safest in the world and there is no reason to suspect they will result in a catastrophic accident that means the end of Germany as we know it – yet that is what people fear.

So, what happens in a case like this?  The results are in.  Fossil fuel use is increasing in Germany, carbon emissions are going up and so is the cost of energy.  The German people are paying more money for an outcome that does more damage to the environment and hence, their health.  Frankly, it’s a high price to pay for the piece of mind that comes from eliminating the perceived risk of nuclear.  Or in other words, the extreme fear of nuclear is driving policy more than concern for either energy cost or the environment.

As shown above, closure of another nuclear plant in 2015 resulted in increased emissions in 2016 (the first full year it was out of service) even though there was a substantial substitution of gas to replace coal.

And after adding 10 percent more wind turbine capacity and 2.5 percent more solar panel capacity between 2015 and 2016, less than one percent more electricity from wind and one percent less electricity from solar was generated in 2016.  So, not only did new solar and wind not make up for the lost nuclear, the percentage of time during 2016 that solar and wind produced electricity declined dramatically.   And why was this the case?  Very simply because Germany had significantly less sunshine and wind in 2016 than 2015.

This analysis was done by Environmental Progress and shows that the intermittency of these renewable sources of electricity both throughout the day and from year to year mean that even huge increases in capacity of these forms of generation will continue to require fossil backup in the absence of nuclear power making 100% renewables an unachievable goal.  Another study shows that to achieve a 100% renewable system in Germany would require a back-up system capable of providing power at a level of 89% of peak load to address the intermittency.

Comparing Germany to France, France has more than double the share of low carbon energy sources and Germany has more than twice the cost of energy as France.

So, trying to decarbonize by also removing nuclear from the mix at the same time is simply too high a mountain to climb.  The following shows that German emissions were 43% higher in 2016 without the nuclear plants that have been already shut down.  Keep in mind that they still do have operating nuclear and with more plants to shut down, the future trend is not likely to change.

It’s not just about Germany.  As Japan struggles to get its nuclear plants back on line after the 2011 Fukushima accident, its use of coal has skyrocketed.  In 2015 its use of fossil fuels for electricity generation was 82% compared to 62% in 2010 when the nuclear plants were in operation.  And now Japan plans to build 45 new coal plants (20 GW) over the next decade to meet its energy needs.

Finally, we can also look at South Australia, a nuclear free zone.  Recent blackouts due in part to lower wind availability and the inability of thermal plants to make up the shortfall are also leading to questions on ‘how much renewables is too much’.

So, we can all continue to hold our beliefs very dearly and only listen to those that support them, while vilifying those that do not.  However, please keep in mind that in a world where the farcical becomes reality, results still matter.  And for now, the results are clear, taking nuclear power out of the mix in Germany is not achieving its political-planners’ goals.  Yet these results are also not likely to change any German minds when it comes to nuclear power.  But hey, why worry about the outcome when you know you are right or as said by comedian Chico Marx in the famous Marx brothers movie Duck Soup “Who you gonna believe – me or your own eyes?”?

Want to minimize radiation from power generation – build more nuclear

Yes, you read that right.  For years, there have been efforts to demonstrate that people who live near nuclear plants or work at nuclear plants are getting sick from all that darn radiation they are receiving.  Over the years these stories have been debunked as study after study has shown that there is no impact from radiation from living near or working at a nuclear plant.

But now a study has been done that shows that of most of the options to generate electricity, nuclear actually releases the least amount of radiation.  This is documented in UNSCEAR’s, the United Nations Scientific Committee on the Effects of Atomic Radiation, most recent report to the United Nations General Assembly, on its study to consider the amount of radiation released from the life cycle of different types of electricity generation.

The Committee conducted the comparative study by investigating sources of exposure related to radiation discharges from electricity-generating technologies based on nuclear power; the combustion of coal, natural gas, oil and biofuels; and geothermal, wind and solar power. The results may surprise some, especially those that strongly believe that nuclear pollutes the earth with radiation, coal with a range of air pollutants and carbon, and that solar and wind are environmentally wonderful.

solar-panels-and-wind-turbines

Coal generation resulted in the highest collective doses to the public, both in total and per unit energy.  Coal radiation emissions result from coal mining, combustion of coal at power plants and coal ash deposits.  The study also considered occupational doses to workers.  Here is the biggest surprise.  As stated “With regard to the construction phase of the electricity-generating technologies, by far the largest collective dose to workers per unit of electricity generated was found in the solar power cycle, followed by the wind power cycle. The reason for this is that these technologies require large amounts of rare earth metals, and the mining of low-grade ore exposes workers to natural radionuclides during mining.”  It is important to note that in all cases these levels of exposure are relatively low and have little impact to public health.

This study only addresses normal discharges during the lifecycle of the station.  Possible larger releases as a result of nuclear accidents are not considered and we recognize that many will argue it is accidents and their consequences that create the largest fear of nuclear power.

So why talk about this?  The reality is that this information is not likely to change even one single mind on whether someone supports nuclear power or fears it.  We live in a world where facts no longer matter – the only truth is the one that any one person believes.  Well, we believe that scientific study remains the best way forward to establish truth and that studies such as these are part of the path forward.  No one electricity generation technology is perfect.  Coal is cost effective and technically strong, but is also a strong emitter of a range of pollutants (including radiation); renewables such as solar and wind are clean but their resource is intermittent and they have issues with both their front end (mining of rare earths) and disposal at the end of their life cycle.

Nuclear power continues to have a good story to tell, with respect to its economics, reliability, environmental attributes and the many good jobs it creates for local economies.  Concerns about nuclear relate mostly to one major issue – fear of radiation.  And fear is a strong emotion that is not easily changed.  But at least what we have here is another study to show that radiation emissions from normal operations of the nuclear fuel cycle is not something to fear – and in fact if you really want to minimize the collective dose to the public, nuclear power remains the option of choice.

It is broken markets, not uneconomic plants that are putting nuclear plants at risk

A huge milestone has been achieved in the United States as Watts Bar Unit 2 produced its first electricity; becoming the first new nuclear plant in the US to start up in 20 years since Watts Bar Unit 1 came into service in 1996.  Unfortunately, this good news was overshadowed by the announcement by Exelon that its Quad Cities and Clinton power stations in Illinois would close.  This decision was the most recent but not the first, with headlines such as “Nuclear plants need boost to stay open, industry warns” or” Nuclear power plants warn of closure crisis” pointing to more nuclear plants that are at risk of premature closure because they are no longer economic in the competitive markets in which they operate.

WattsBar

Watts Bar – America’s newest nuclear plant

There are many explanations as to the cause of this “crisis”.  Gas prices are currently very low, renewables are subsidized and the costs of some of the smaller oldest single unit nuclear plants in the country have been rising as they age.  While all of these points are true, they are not in and of themselves, the direct cause of the problem.  They are symptoms of deep structural issues in those parts of the country where electricity is bought and sold in so called open or deregulated markets.(Note: Watts Bar, owned by the Tennessee Valley Authority, is in a regulated market.)

This was the topic of a recent DOE summit on how to “save” the nuclear fleet (“Summit on Improving the Economics of America’s Nuclear Power Plants) to address the crisis and take steps to avoid the unnecessary closing of a significant number of plants.  So here we are and once again, we fall into the trap of incorrectly defining the problem as costly inefficient nuclear plants. After all the US summit is on how to improve the economics of nuclear plants, not how to fix poorly structured markets – the real problem.  (Note: In Europe there are similar issues driven by a high level of subsidized renewables rather than low gas prices.  But the need to find a solution is the same.  A European Commission official assured delegates at a recent nuclear financing conference held in Paris that the design of European wholesale electricity markets and the emissions trading system (EU ETS) will be improved to help – and no longer hinder – nuclear energy as a low-carbon source of electricity.)

In the guise of providing the lowest cost to ratepayers, most markets are completely focused on the short term.  There is little consideration of risk built into the pricing mechanisms, only what is the lowest cost to generate electricity right now.  This means that there is no value attributed to any of the other important operating attributes required for a reliable and secure electricity supply system such as fuel availability, maneuverability, flexibility and price volatility.  On top of this, things like government environmental policies and subsidies further distort the markets to ensure that mandated renewables have a role in the system.  (Of course nuclear has not benefited from such support even though it is a low carbon option.)

This may have all worked fine 25 years ago when markets were opened with the objective of creating efficiencies in the existing operating fleet –a time when many jurisdictions were in oversupply.  But when it comes to adding capacity or making other substantive changes to the system, electricity markets are not nimble.  While there may be a desire to respond to price signals in the short term, building new plant takes time.  And one thing is for sure, no one will build new plant of any kind without some confidence that they will generate sufficient revenue to operate for their projected lives and earn a return on their investment.  Or as stated in the OECD report Project Costs of Electricity, “The structure of the electricity generation mix, as well as the electricity demand pattern, is quite inelastic in the short term: existing power plants have long lifetimes and building new capacity and transmission infrastructure may require a considerable lead time as well as significant upfront investments. In other terms, electricity systems are locked in with their existing generation mix and infrastructure, and cannot quickly adapt them to changing market conditions.”

It is also important to understand that not all market participants are equal.  In most markets gas is the price maker, not a price taker.  So when gas prices are high, everybody else in the market makes money and when gas prices are low, everybody struggles.  And yes, today gas prices are very very low.  Yet gas operators are relatively indifferent as they are the risk free players in the market.  Even in this enviable position, gas generators did not have sufficient incentive to build new plant, so many markets have responded with the development of capacity markets.  These capacity payments then compensate gas plants for sitting idle – effectively removing the risk to gas generators of building new plants.

So you may ask, what’s the problem with that as long as we have low energy prices?

If open markets are so efficient then we should expect that prices in these areas should be lower than in areas where regulated markets have remained.  Not so, says an April 2015 study by the American Public Power Association.  In fact, in 2014 prices in de-regulated markets were as much as 35% more than those in regulated states.  (Note: this study has been done by an organization with an interest in the result and as such may contain bias.)

So let’s go back to electricity system structuring.  When it comes to managing risk, we know risk is generally reduced through a diverse portfolio of alternatives.  The more diverse, the more risk can be reduced.  The current path will result in systems that are not diverse, but rather all gas, currently the most economic alternative.  If markets do not adapt to better accommodate risk management into their pricing strategies, we face a future of volatile energy prices, possible energy shortages as new plant construction lags market needs and increases rather than decreases in carbon emissions; all in the guise of more efficient markets.  Back to the decision in Illinois.  As stated in the referenced article, not only are these two plants Exelon’s best performers, they “support approximately 4,200 direct and indirect jobs and produce more than $1.2 billion in economic activity annually. A state report found that closing the plants would increase wholesale energy costs for the region by $439 million to $645 million annually. The report also found that keeping the plants open would avoid $10 billion in economic damages associated with higher carbon emissions over 10 years.”

We only need one major market disruption to remind us all of the importance of truly reliable baseload power at a stable and economic price and how that protects us from the risk of higher prices and lower security of supply.  And today, there is only one low carbon highly reliable baseload option, nuclear power.

So while a short term fix to keep operating nuclear plants open is required and more urgent than ever, let’s stop talking about how plants are uneconomic and work to properly improve market structures to build and maintain the strong, reliable, economic and low carbon systems needed to power our modern economies.

Let’s create awareness for all the benefits that nuclear technology brings to mankind

When a report on the benefits of nuclear technology starts with “The public are often unaware of the extent to which aspects of their everyday life involve products and processes originated from the application of nuclear technology via the nuclear industry”, it tells me that the time has come to tell this story and increase public awareness.

medical1

I had the opportunity to attend the Nuclear Industry Summit in Washington last month and was privileged to participate in Working Group 3 which had the mandate to summarize the role of the nuclear industry globally.  The NIS was a very successful event.  It was a companion event to the Nuclear Security Summit held by President Obama and provided an opportunity for the nuclear industry to interact and present its views to global leaders on the key issues of nuclear security and how the industry addresses it.

With the 5th anniversary of Fukushima having just passed last month and the 30th anniversary of Chernobyl this month, we have a steady reminder of the issues that never seem to go away for the nuclear industry.  It is our nature.  In his very enjoyable talk to the Canadian Nuclear Industry Conference in February, Malcolm Grimston asks the key question of why is it that the safest source of large scale electricity generation we have ever come up with is considered so dangerous by enough people that in a number of countries there is an effort to stop using nuclear energy?  I have commented on Malcolm’s presentations before and I really enjoy his perspective.  We in the industry tend towards the problem being an irrational public – Malcolm insists the public are quite rational and that it is actually the industry that is providing much of the information that frames public views.  An example is the constant talk by the industry about safety and how safety is the most important issue.  While intended to provide comfort, it can achieve quite the opposite effect.  If safety is even more important than generating electricity reliably and efficiently the answer is quite simple – shut down the plants and safety is assured.  I won’t go into more detail but I do recommend you watch Malcom’s presentation when you have 25 minutes to spare.

Or as was so eloquently put by the CEO of Ontario Power Generation at the CNA conference when talking about the nuclear industry, “we make sure to find the black cloud around every silver lining left to our own devices.”  Yes, we in the industry often succumb to the narrative and as Malcom suggests, probably even feed the beast. (Aside:  I also urge you to watch Jeff Lyash’s presentation when you have 20 minutes to spare.  It is an excellent view of the industry going forward.)

So rather than talk about safety and nuclear waste as we tend to do over and over again; in this post I want to help increase awareness of the many benefits that nuclear technology brings to us all across a range of industries.  The paper submitted by Working Group 3 led by Dr. John Barrett, President of the CNA is a must read.  It is one of those papers that once read makes you wonder; why hasn’t this paper been written this way before?  So please read the paper – it is about 20 pages and well worth it.

But for those who may not get there quickly enough here is a summary of the benefits that nuclear technology brings to society each and every day.  As stated in the paper, “Nuclear technology is vital for more than just providing reliable, low-carbon energy. It also has life-saving medical application; improves manufacturing, mining, transport and agriculture; and help us discover more about the planet we live on and how we can sustainably live with it.

So for example, did you know that

  • nuclear technology saves lives through use of radioisotopes for screening, diagnosis and therapy of various medical conditions? According to the WNA, over 10,000 hospitals worldwide use radioisotopes. Radioisotopes are used in therapy to control and damage cancerous growths. Iodine-131 is used to treat thyroid cancer; Phosophorus-32 to treat leukemia.  Nuclear techniques are used for neonatal screening for sickle cell disease, hypothyroidism and cystic fibrosis, as well as childhood cancers.
  • radiation is used to preserve seeds and food products and breed disease-resistant plants. In plant breeding, some 1800 new crop varieties have been developed through mutation induced by ionising radiation.
  • irradiation technology is increasingly being used to preserve food – spices, grains, fruit, vegetables and meat. It avoids the use of potentially harmful chemical fumigants and insecticides
  • use of the IAEA’s Sterile Insect Technique irradiates the eggs of these insects to sterilise them before hatching. The IAEA estimates that, by suppressing insect pest populations with SIT, pesticide use worldwide has been reduced by 600,000 litres annually.
  • in industrial radiography, nuclear substances are used for the non-destructive examination and testing of new materials. Radiation from the substances passes through the material and allows defects in welds or constituency to be recorded on film or a digital imager.

This list does not do justice to the report itself which I strongly suggest you read.  It’s time to stop being on the defensive and make sure that we no longer have to write reports that start with “The public are often unaware of the extent to which aspects of their everyday life involve products and processes originated from the application of nuclear technology via the nuclear industry.”  It is time to celebrate our successes and not just talk about where we need to improve.  We are proud to be part of the nuclear industry and we are confident that we are making a difference that helps to make the world a better place.

How can Nuclear Power Build Trust in a time when denying science is rampant?

Recent public outcry as a measles outbreak has managed to impact much of North America has once again showed the nature of public deniers of science. In this case it is concerns about vaccinations that have led to numerous children falling sick with measles. While not considered a highly risky disease, some children get very sick and some may actually die. The main concern is that it is very contagious so that without vaccinations it moves quickly within a community to infect large numbers of people, greatly increasing the public risk.

This is only the most recent large scale public outcry where science is ignored. It is the same as those who deny climate change and those who deny the safety and benefits of nuclear power.

April 15, 2014

The role of nuclear power in combating climate change has once again been demonstrated in the most recent update of the IEA Nuclear Power Roadmap.

  • Based on the 2 degrees Celsius (°C) scenario (2DS) – nuclear power would continue to play a major role in lowering emissions from the power sector, while improving security of energy supply, supporting fuel diversity and providing large-scale electricity at stable production costs.
  • Global installed capacity would need to more than double from current levels of 396 gigawatts (GW) to reach 930 GW in 2050, with nuclear power representing 17% of global electricity production and a formidable growth for the nuclear industry.
  • Governments have a role to play in ensuring a stable, long-term investment framework that allows capital-intensive projects to be developed and provides adequate electricity prices over the long term for all low-carbon technologies. Governments should also continue to support nuclear research and development (R&D), especially in the area of nuclear safety, advanced fuel cycles, waste management and innovative designs.

This means that a larger commitment to nuclear power is an important element of any strategy that has a chance of getting climate change under control.

The report also notes that public acceptance continues to be one of the major impediments to a stronger commitment to nuclear power in many markets. Concerns about safety, costs and waste disposal continue today; the same issues as they were back when I started work in this industry more than 30 years ago. While science can clearly demonstrate that nuclear power has benefited the environment, by avoiding significant amounts of pollutants and carbon emissions; is very safe; and that waste management is more of a social issue than a technical one: public attitudes remain very hard to change.

Generally the public has very different views on key issues than scientists. In this year’s annual meeting of the American Association for the Advancement of Science (AAAS) a significant number of discussions were about how the public thinks about science issues and how scientists communicate about their work. On key issues the difference in opinion according to PEW research is striking. While 57% of the public believe that eating GMO food is unsafe, 88% of scientists believe the opposite. Only 68% of adults believe vaccinations should be mandatory while scientists are at 86%. And finally only 50% of the public believe that climate change is man-made while 87% of scientists believe in man-made climate change. Clearly there is a huge gap between science and public beliefs. We in the nuclear industry are not the only ones to suffer from this lack of effective communication.

I have long noted when told the industry must better educate the public that in reality, the public does not want an industry science lesson which tends to be the approach most used in the past. In fact, when this approach fails, experts just shake their heads and try again. In reality what the public want to know is that the industry is safe, and that this safety is in the hands of experts that they trust to deliver upon this promise. We see that one of the largest impacts of the Fukushima accident in Japan is the loss of trust in both the utility and government by the population. The impact to the public of this is significant – the health impacts of the fear of radiation and the accident is far larger than the actual health impacts of any radiation to the public.

Trust is not something that is built overnight. It takes years, even decades to develop trust with the public – and only a moment to destroy it. People are skeptical (as they should be) and unfortunately are always ready to believe stories that discredit those they don’t trust.

So why do I bring up the measles outbreak? Because we finally have an incident where the public seems outraged at deniers and supportive of science. Measles vaccinations are safe. Millions of doses have been safely given to children over decades. They save lives. And those that disagree have been putting not only their children at risk but also the children of their neighbours and colleagues. One has to ask, how can any educated, concerned adult put his or her own children at risk? Clearly they believe that the risk of vaccination is higher than the risk of the disease. In the midst of all of this, recent news surveys are showing that significant numbers of people still believe the vaccination can put their children at risk. This is just not the case given the science.

It was said best by a mother in Pickering Ontario who has already lost a young child to illness and who now has her baby at risk, “If you have chosen to not vaccinate yourself or your child, I blame you,” she writes. “You have stood on the shoulders of our collective protection for too long. From that high height, we have given you the PRIVILEGE of our protection, for free. And in return, you gave me this week. A week from hell. Wherein I don’t know if my BABY will develop something that has DEATH as a potential outcome.”

It is essential to understand these words. It is easy to oppose something when you are already benefiting from it. Yes, don’t vaccinate your child because you know the risk of disease is low since all others are vaccinated, oppose GMO foods when you have ample safe food to eat while others are starving, and oppose climate change while you have reliable electricity and relatively clean air while others can’t breathe and are the first to suffer the consequences.

There seems to be a large scale shift from public good to individual good in society these days. Trust in government, scientists and other institutions is very low. The public is not willing to accept that these institutions have their back so they quickly rush to beliefs that are not supported by science with the resulting ultimate negative impacts on society. To be fair these beliefs come because many of these institutions that were trusted in the past have let the public down. And in this day of instant news and social media, it is easy to attack, but then interest is lost by the time the truth comes out and only a small subset of those who read the original story of concern remain interested enough to see the truth when it comes out.

Trust – it is essential for the future of nuclear power. The public must trust the industry to deliver on its promise of developing and operating safe, reliable and economic nuclear plants. They must trust the government to provide a strong regulator to oversee the industry and ensure public safety. This industry is dependent upon this trust if it is to flourish.

Building trust in science is a task that goes well beyond the nuclear industry. Yes, scientists have much work to do to build that trust with the public and government, but governments must then ensure that they use science as a basis for policy. While it remains reasonable to question the results of science, it is not reasonable to base policy on the assumption that science is wrong. Government in all countries need science advisers in key positions to ensure that real science is heard when policy is being made.

The media is also part of the solution. Poor reporting looking for the sensationalist point of view is not helpful. Science journalists must be the ones to cover science issues and they must take the time to report on them correctly. Just this week there was a fascinating editorial in the Canadian newspaper, the Globe and Mail when a reader complained about the lack of “balance” on the vaccination issue. The response by the Globe is important reading,” The reader is correct that news stories should be fair and balanced, but if The Globe were to include someone “credible” from the anti-vaxxer community, that would be false balance….False balance is when journalists twist themselves into a knot to try to balance scientific and expert views with someone whose views are not fact-based, expert or scientific….. False balance is not only poor journalism, it can harm the readers’ understanding because it suggests there is a balance between the views. In politics, for example, it is important and responsible to offer fair weight to different parties’ views. It is not responsible to offer equal weight to science versus flimsy beliefs.”

The issue is that most people today listen to those they are familiar with and trust and discount those they don’t know. Therefore nothing is more important than the scientific community listening to and speaking with the public in a way that earns their trust. Getting this done is essential to all of our futures. The work ahead of us all to build trust in science is huge and it will take a long time but we must be relentless in our efforts to make this happen.

Given the public push back in this measles outbreak, we can ask – is this the beginning of a new opportunity for dialogue on issues that are supported by science? Is the public starting to understand that their beliefs may be hurting them more than helping? If so, then we need to ensure that the nuclear industry is continuing to deliver open, honest and transparent information in support of its benefits while clearly explaining the magnitude of the risks. Science is on our side. Now it’s time to make a strong case to the public.

The British are coming – new nuclear committed in the UK

After many years of effort, this month it finally happened. The UK government and EDF Energy, the French-owned UK integrated energy company, agreed to a strike price making the first new nuclear build in the UK in a generation, at Hinkley Point C, a reality.

It was a long hard road.  New nuclear first came up about a decade ago when it became clear that Britain’s nuclear fleet was aging and would soon need to be retired.  At that time British Energy was advocating to replace the existing fleet with a new fleet over the coming two decades.  Unfortunately the timing was not right.  Late in 2002 British Energy got into severe financial trouble requiring a significant restructuring to keep it solvent and early in 2003 the British government declared war in Iraq.  Both of these events made it difficult for the then Labour government to take on the issue of new build nuclear.  So in 2003 the Energy White Paper issued by government focused on reducing carbon emissions primarily with renewables and nuclear was but a footnote as government declared its intention to “keep the nuclear option open”.

What a difference a decade makes.  Over the ensuing years as it became clear that renewables on their own would not be able to carry the load if carbon targets were to be met and concerns about security of supply as the UK became a net importer of energy (primarily Russian gas); once again government turned to nuclear energy.  The history of events over this decade it too long to describe here although I think it would make an excellent business or public policy school case study.

Slowly the issues were tackled one by one through aggressive policies that resulted in among other things:  EDF Energy buying British Energy, the creation of a generic design approval process by the regulator, changes to the electricity market to support non carbon producing projects to be built; and most of all – continuing effort to support positive public opinion even after the Fukushima accident in Japan.

And this is all in the context of the UK slowly and deliberately dismantling its domestic nuclear industry.  The UK was an early leader in the development of nuclear power in the 1950s.  Over the next 40 years it developed a large domestic infrastructure culminating with the transition to PWR technology at Sizewell B to the extent that in the 1990s BNFL actually bought the Westinghouse nuclear business – Britain was back in the nuclear business as a vendor.

Yet over the past decade, Westinghouse was sold to Toshiba, British Energy was sold to EDF and British Nuclear fuels Limited (BNFL) was completely dismantled (all at great profit to government).  The new UK nuclear industry is comprised of a domestic manufacturing and services sector using foreign technology with plants being built by new nuclear operators also owned by foreign companies.

After all the hard work, the agreement reached this week is of tremendous importance to the global nuclear industry for a number of reasons.

The UK is forging ahead with a strong nuclear program while others in Europe are going in the opposite direction. Germany is abandoning its nuclear industry and even France is looking to reduce its reliance on nuclear over time.  The lesson learned here is that need trumps all else.  The UK is strongly committed to reducing carbon emissions; recognize they can’t do it with renewables alone and are not prepared to become overly dependent upon fossil fuel imports.

The project is being built in a liberalized (deregulated) market.  Although there is much discussion about subsidy being provided by government, this project will demonstrate that a new nuclear plant can be built with outside investment in a western open market.  The CFD (contract for difference) model is necessary to provide the stability needed to invest the huge sum of money required (estimated at £14 billion) with a very long payback period.  In Canada this model has been used successfully to refurbish the Bruce Units 1&2 reactors but this will be the first time it is used for a longer duration and higher cost new build project.

While some are critical of the price (€92.50 /MWh) it should be clearly noted that this price is below all other forms of carbon free electricity even if it is higher than imported gas at the moment.  Just imagine trying to set a rate today for a project coming into service in 2023 and then lasting for 35 years.  And most of all, it has been reported that EDF Energy is expecting about a 10% return on its investment – very reasonable given the expected risk profile of a large nuclear project, especially with the experience so far in Finland and in France with new build.

So why can EDF Energy take such a risk?  Primarily because this will be the 5th and 6th EPR built and the third project in Europe after Finland and France.  At this point, the design is well developed, the supply chain is in place and the costs are well understood.  What is new is that it is to be done in the UK and there will be new local suppliers likely taking on a significant scope.

The UK government has accepted a significant Chinese investment in the project.  CGNPC, the Chinese operator of a number of nuclear plants and the constructors of the two EPRs at Taishan and its Chinese partners will bring about 30 to 40% of the money needed for this project.  This is huge!  First of all it is a clear acceptance of the size and strength of the Chinese nuclear program – CGNPC has the most active nuclear construction program anywhere.  And it opens up the potential to ensure the expertise from the Taishan project, arguably the most successful EPR to date, will be available to support Hinkley Point C.

The public is supportive of this projectPublic support for new nuclear in the UK has become somewhat more positive in recent years, with similar proportions of people now supporting (32%) and opposing (29%) the use of nuclear power, compared to 26% (supporting) and 37% (opposing) in 2005.  And of more interest, a similar number of people want to continue nuclear at current levels or with expansion (43% in 2005, 46% in 2010 and 44% in 2013), while fewer people now want to see nuclear power phased out or shut down (50% in 2005, 47% in 2010 and 40% in 2013).  This is a result of a number of factors. First, there is a need for energy and nothing drives support more than worrying if the lights will go out.  Second, the environmental sector is behind nuclear.  The British are very serious about their commitment to reducing carbon emissions.  George Monbiot came out in favour of nuclear energy within a month of the Fukushima accident.  Mark Lynas has become a strong supporter and has been profiled in the recent documentary “Pandora’s Promise”.

So what can we all learn from this process?  First of all developing new nuclear takes time.  With a decade of effort behind this agreement, the time it took to reach agreement is just as long as the anticipated time to build the plant.  A decade to get ready and now a decade to get the project into service (scheduled for 2023). Amazing isn’t it?

So to all of our friends in the UK, you have reached a critical milestone on your journey.  Keep up the good work and we wish you all the best as you move to the next phase of your new build programme.

Whatever happened to searching for the truth?

Finally this week, we are feeling the heat of summer.  I am off next week to teach for the WNU in Korea and China.  I always enjoy these summer courses and find the interest of those attending to be inspiring.

That being said I thought I would be a bit more philosophical this month.  For the past two months I have been also posting my blog on www.theenergycollective.com.  Thanks to that site for allowing me to share my thoughts with a broader audience.  My last post seemed to stir up a litany of comments (well over 100) with some very extreme points of view (to be fair both negative and positive).  I was called a “patently gross liar” as well as “not the brightest person to talk to on the subject”.    Nuclear power is a topic that invokes quite a bit of passion.

The nature of the comments supports many of the things I have been talking about for the last year or so; confirmation bias being one of the most critical concepts.  As I see it, in that post I pointed out three relevant studies that were carried out with good scientific rigour, all subject to peer review and authored by three very different groups of experts.

The first was by a Canadian regulator who is responsible for ensuring public safety which is why they did a study to determine if people living near nuclear plants are getting sick.  Their strongly supported conclusion was that this is not the case.  You would think this is would be good news.  Even If I was against nuclear power I would still be pleased to find out that children who live near these plants are not getting sick.

The second was by an American environmentalist who has demonstrated that operating nuclear plants instead of fossil plants over the past 40 years or so has benefited society by reducing real deaths due to pollution.  Again, good news as this study claims about 1.8 million lives saved.

And finally the third a study by a small army of United Nations experts from around the globe who have determined that radiation has not and is not likely to kill anyone as a result of the Fukushima accident in Japan.  Once again, good news that even after a horrible accident, human life has been protected.

So why are these things so hard for so many to accept?  As I have just read in Daniel Kahneman’s “Thinking Fast and Slow” – “when people believe a conclusion is true, they are also very likely to believe arguments that appear to support it, even when these arguments are unsound” – once again confirming what I have said many times before, beliefs come first and anything that disputes our beliefs is immediately suspect.

It is easy to become cynical in a world where there is little desire to believe in science and the search for truth.  It has become a case of my scientists versus your scientists.   Everyone can find someone to support his or her point of view. The press feeds this model as the more alarming side of the story gets the most coverage. They then try to demonstrate fairness by soliciting input from both sides of the issue.  However, when showing both sides of a debate it is often not in the context of where the science is; they just pull out “experts” on the other side giving the illusion of broad based disagreement even though there may be significant scientific consensus.

For example, as was stated by President Obama this week in his speech on climate change; “The overwhelming judgment of science — of chemistry and physics and millions of measurements — has put all that to rest. Ninety-seven percent of scientists, including, by the way, some who originally disputed the data, have now put that to rest. They’ve acknowledged the planet is warming and human activity is contributing to it.” He continues “but I don’t have much patience for anyone who denies that this challenge is real. We don’t have time for a meeting of the Flat Earth Society.”   It is nice to see a leader that says we have scientific consensus so we need to act.

Does that mean that the consensus is right?  Of course not.  Science is far from perfect but in a rationale society we must be guided by the science of the day – for that is what science is all about.  It is indeed healthy to continue to question and study and one day we may all be proven wrong.  But until then we should be guided by the consensus of scientifically produced studies and act accordingly.  That is the right thing to do. Instead, in many cases today we have unending debate resulting in the inability to act.  And of course this is the strategy of many who oppose various things.  These anti whatever folks know the process and in essence are the winners because they know how to keep the debate going and ensure inaction.

Here is another negative comment from my last post.  “My jaw drops when I hear some of the comments made by pro-nuclear folks.  I try to stay away from using terms such as idiotic, half-witted, ignorant or that might inflame the discussion.  Sometimes, however, the comments are so asinine, so moronic, it’s hard to resist.”  I am sure this individual is certain he is right and we are wrong and there is no amount of discussion or evidence that will change his mind.

This takes me back to a quote I used in my blog last summer from Dan Gardner’s book “Future Babble” which is actually a quote from Leon Festinger.  “Suppose an individual believes something with his whole heart.  Suppose further that he has a commitment to this belief that he has taken irrevocable actions because of it; finally, suppose that he is presented with evidence, unequivocal and undeniable evidence, that his belief is wrong; what will happen?  The individual will frequently emerge, not only unshaken, but even more convinced of the truth of his beliefs than ever before.”

This is what makes the movie Pandora’s Promise so interesting.  It is about recognized environmentalists who have studied the issue and changed their mind.  I still haven’t seen it as it is not yet showing in Canada but the reviews are very interesting.  Everything from well done to one sided propaganda.  Will it change any minds at all?  I do hope so but the evidence is that it is really quite difficult.

So I leave you with one last negative comment from my last blog.

You are a pro-nuclear guy trying to make believe that nuclear is as safe as mother’s milk and that it is the environmentally sensitive way to generate power.  Let’s see, we aren’t even two years this side of the Fukushima disaster that is still ongoing but, hey, I’m on the fool’s side of history.  There is no safe disposal for nuclear waste.  The gazillions of dollars it would take to build your little fantasy of a nuclear power plant on every block are non-existent and no one will invest unless the government is there to protect their underwear from cost overruns, economic collapse, default, and, oh yeah, any kind of nuclear disaster.  The real problem is that pro-nuclear folks are more concerned about their jobs than what is good for humanity.  Keep living in your little bubble world. “

I would argue as to which one of us in is the bubble world, but as an industry our task is definitely a difficult one.  However given the facts we must persevere.

The only thing more powerful than the truth is fear

As I was thinking about what to write this month, I was invited by my dry cleaner to attend a protest in a nearby park against genetically modified food.  This somewhat infuriated me as I know without doubt that GMO has helped millions around the world and had never killed anyone (although denial of these foods has), yet, as with nuclear power, opposition remains strong, especially in Europe.

My dry cleaner argued trying to tell me that 500,000 were killed in India due to GMO and, as you can imagine, there was no winning the argument.  Mark Lynas, who I have quoted in previous posts has recently taken a hard stand against those who oppose GMO. Mark makes his position clear in his talk at Cornell University this past April where he opens with the following: “I think the controversy over GMOs represents one of the greatest science communications failures of the past half-century. Millions, possibly billions, of people have come to believe what is essentially a conspiracy theory, generating fear and misunderstanding about a whole class of technologies on an unprecedentedly global scale.

It is no mistake that environmentalists like Mark have also changed their views on nuclear power and are now vigorously supporting it.  The simple reason is that Mark and others like Stewart Brand and George Monbiot, are taking positions that are founded in science rather than a set of beliefs that may feel right, but cannot be supported by scientific evidence.

Most of the opposition to nuclear power is founded in fear – primarily the fear of radiation.  However, scientific evidence continues to grow demonstrating the benefits of nuclear power while disproving widely held beliefs of many who oppose it.

For example, this past week (on May 23), a new study was reported on by the Canadian regulator (CNSC) looking at cancer rates near Canadian nuclear plants.  Not surprisingly, once again the results were clear.  No indication of any increases in cancer near nuclear stations relative to the rest of the province.  “The most important finding of this study is no evidence of childhood leukemia clusters in the communities within 25 km of the Pickering, Darlington and Bruce NPPs.”

Next I return to the study I wrote about last month published in the Journal of Environmental Science and Technology by Pushker A. Kharecha and James E. Hansen of the NASA Goddard Institute for Space Studies and Columbia University Earth Institute.  They found that nuclear power has saved an estimated 80,000 lives annually – 1.84 million in all – since widely introduced in the 1970s and could save another 5 million if construction continues at a decent pace due to a reduction in air pollution.  Nuclear power has also reduced carbon emissions by 64 Gt over the same period.

And finally UNSCEAR has now released the results of its latest study on the Fukushima accident.  It clearly concluded “Radiation exposure following the nuclear accident at Fukushima-Daiichi did not cause any immediate health effects. It is unlikely to be able to attribute any health effects in the future among the general public and the vast majority of workers“.  But of even more importance this study also concluded that there are health effects from the Fukushima accident stemming from the stresses of evacuation and unwarranted fear of radiation.

So what does all this tell us?  Looking at these three studies we can confirm that

i) operating nuclear power plants do not cause cancer to the residents of nearby communities from normal operations;

ii) over the past 40 years nuclear power has in fact saved almost 2 million lives through a real reduction in pollution by not burning fossil fuels and its resultant health impacts; and finally

iii) that after the biggest nuclear accident in the last 25 years, radiation has not harmed any of the people of Japan and is unlikely to do so in the future.

Considering these kinds of results, why aren’t we seeing this reported in the main stream media?  With this kind of story there should be universal praise of nuclear power and strong support for its expansion.   Frankly, if it were any technology other than nuclear that was reported to have saved millions of lives we likely would have seen it in the headlines at CNN, BBC  and other mainstream media.  So why are we primarily seeing these nuclear studies reported in trade magazines and blogs?  Why is the world not blown away by this fantastic evidence of the benefits to our lives of nuclear power?  As I was pondering these developments I came upon a chapter title in the book I am currently reading by Ben Goldacre called “Bad Science” (Good book by the way).  The chapter title is “Why Clever People Believe Stupid Things”.  The chapter then goes on to discuss many of the things we have discussed in this blog before such as confirmation bias, seeing patterns where there are none and a host of other standard reasons why people tend stick to their beliefs in light of strong evidence that they should consider alternatives.

The reality is that some people will never change their view of nuclear power and will oppose it no matter what evidence is brought before them.  But for those of us who are frustrated, there is hope.  We are starting to see positive change.  We have well known environmentalists seeing the benefits of nuclear power.  This is now captured in the new documentary “Pandora’s Promise” coming in June.  Film maker Robert Stone is quoted as saying “It’s no easy thing for me to have come to the conclusion that the rapid deployment of nuclear power is now the greatest hope we have for saving us from an environmental catastrophe,”   Entertainment Weekly says “the film is built around looking at an issue not with orthodoxy, but with open eyes”.  (I know some of you have already seen it.  I haven’t seen it yet but I am looking forward to it).

Our story is strong.  The message is positive and one of hope for the future.  But overcoming fear is no easy task.  Fear is a powerful emotion.  It will take hard work, commitment – and most of all –  time.  But if we all persevere, the future is bright. The time has come to get the message out and show how much nuclear power contributes to society, and how necessary it is in a high energy and resource intensive world.

Learning the right lessons – a new paradigm to build a brighter future

Last month we talked about Fukushima two years on and focused our discussion on making sure we remember the real people whose lives continue to be severely impacted by this accident.  This month, as we also remember Chernobyl on its 27th anniversary, I wanted to talk about the legacy of these events and focus on learning the lessons that are necessary to make the industry stronger and, most of all, improving its support amongst the public.

There have been a number of important positive reports recently that can lead to a better understanding of the consequences to the public of nuclear power.

The first being a study by Japanese researchers who found that internal radiation levels in the population around Fukushima are very low.  “Some 99% of residents of Fukushima prefecture and neighbouring Ibaraki have barely detectable levels of internal exposure to cesium 137, a group of Japanese researchers has found. Of the remaining 1%, all showed levels well below the government-set limit.”  Of interest, the levels are much lower than following the Chernobyl accident and indicate low levels of contamination in the food.  This builds on the recent WHO study I reported on last month that says the risk of adverse health impacts from radiation to the Japanese population is very low.

Second, a study was published in the Journal of Environmental Science and Technology by Pushker A. Kharecha and James E. Hansen of the NASA Goddard Institute for Space Studies and Columbia University Earth Institute.  They found that nuclear power has saved an estimated 80,000 lives annually – 1.84 million in all – since widely introduced in the 1970s and could save another 5 million if construction continues at a decent pace due to a reduction in air pollution.  Nuclear power has also reduced carbon emissions by 64 Gt over the same period.  This study is important because it quantifies the benefits of nuclear power being clean compared to burning fossil fuels.  Its author, James Hansen is considered an environmental activist who has taken hard positions on a number of environmental issues.

And finally a new draft document by the US Environmental Protection Agency that “would change its long-standing advice to state and local governments about how to limit long-term exposure to radiation after a reactor accident or a “dirty bomb” attack. By reducing the projections for how much radiation exposure is likely in the years after such an episode, the proposal could also reduce the amount of contaminated land that would have to be abandoned.”  This is critically important because finally there is starting to be a discussion on how to best respond in the event of an accident in addition to how to prevent accidents in the first place.

So why talk about reports such as these?  Because I think they are a critical step to ensuring we learn the right lessons following Fukushima.  This will lead to improving the response following accidents, and then ultimately starting a meaningful dialogue to reduce the public fear of nuclear power.

In the industry we often see the focus continuing to be on how to both reduce the risk of accidents in the first place and then ensure that even when there is an event there are no releases of radiation to the environment.  These post-Fukushima lessons learned fall into three broad categories:

  • Reducing the risk of an accident by building better protection against such hazards as earthquakes and tsunamis
  • Ensuring continued cooling of the reactors following an event through the use of portable accessible temporary power to replace safety systems that may have been damaged or destroyed on site; and
  • Better Severe Accident Management Guidance (SAMG) so that even after a severe accident there would be no releases. This includes such protections as hardened vents and recombiners to lower the risk of hydrogen explosions and various sorts of strategies for in-containment retention of any melted core.

But while this is all good, it is not going to get us to the solutions we need as it only goes part of the way there.  We also need to demonstrate that we have clear and effective strategies so that even if there are releases we can protect people and keep them safe.  This means a better understanding of the real health risks of radiation exposure so there can be clear guidelines on when to evacuate and of even more importance when to allow people to return.  And there also needs to be clear guidelines for remediation of land following any amount of contamination and how to go about it.

The latter is absolutely necessary because when it comes to public safety and hence public support, the real issue with nuclear power continues to be fear.  While most people would probably accept that nuclear power provides safe and clean electricity under normal operating conditions; the real fear comes from the belief that even if the risk is small, the consequences of a nuclear accident are too severe to be tolerated by society.  And as long as this belief holds, no matter what the industry does to reduce the risk of an accident, the fear will never change.  The more emphasis we put on trying to make it almost impossible for there to be an accident with releases, the stronger the belief that we must do this because the consequences of releases are just too severe to even contemplate.

This makes nuclear a hard sell to the public because the consequence is seen as real while the risk is less relevant.  People evaluate risk by focusing on the severity of consequences and considering their perceived control over them.  Some people are afraid of flying and not driving even though we all know the risk of dying in an auto accident is significantly higher than in a plane crash.  Why?  In part because we all believe that we are good drivers (control) and even if we have an accident we can survive because not all individual car accidents kill people (severity).  Therefore we can convince ourselves that we likely won’t have an accident and even if we do, it won’t be a bad one.  On the other hand, we may fear flying even though we know the risk is small because we also know that if we are the unlucky ones to be on the one plane that does go down, then we will surely die.  And so it goes for nuclear.  While safe most of the time, the public believes that IF there is an accident our communities will be destroyed by contamination and we will either die or even worse our children and grandchildren may also die from cancer in the future.

This is why need a change of paradigm.  What studies such as the ones above actually show is that:

  • Safely operated nuclear plants save lives every day by not polluting our environment as does burning fossil fuels.  These are real lives saved and the numbers are big.
  • Radiation is not as dangerous as most people think especially at low levels of exposure.  While it is a carcinogen, it is a far less potent carcinogen that many others we see in our everyday lives from many forms of pollution.  In fact we use radiation in medicine to save lives by both diagnosing illness and treating diseases such as cancer.
  • Following really bad accidents such as Fukushima; where the entire area was devastated by a huge natural disaster that made it increasingly difficult to manage the nuclear accident at three reactors at the same site; we have still been able to protect people from radiation.  The result being that to date not even one person has died from it; and studies show the risk of dying in the future to be too low to measure.

But we also know that through extreme fear people have died being evacuated in haste; that people have had their lives disrupted with extreme fear of not knowing if they will have health impacts or not; and that governments do not have clear and effective guidelines for how to remediate following such an event leading to fear causing irrational decisions that actually further fuel the fear. And that is why we need more effort on managing consequences and improving accident response.

So let’s learn the right lessons and start the hard work of changing the paradigm.  Let’s demonstrate to the public that they don’t need to be afraid; that nuclear accidents are very rare; that even when the next accident happens (and it will) that we can effectively keep the public safe from health impacts and protect their homes and their families.

Let’s explain to the public that while the risk of a nuclear accident is much lower than being in a plane crash (and air travel is very safe), so are the consequences.  Because we also know that if we are in a plane accident we will most likely die.  What we need to know is that even after the worst possible nuclear accident we will likely not die – and that our families and children will not suffer serious health impacts.

This is the big change.  Understanding that the risk of a nuclear accident is low and the consequences are indeed manageable is essential to reducing the fear that is so strong amongst the public.  And only without fear can nuclear power fully achieve its potential as the way forward to producing clean abundant energy for a better society.  Now this would be a great lesson learned from Fukushima.

The changing face of global energy – Is nuclear power being left behind?

I have just done my first pass of the Word Energy Outlook 2012 issued by the IEA this November.  Many of you will have seen some of the headlines – one of the most intriguing is that the US is expected to become the world’s largest oil producer by 2017 exceeding the output of Saudi Arabia.  With headlines like that how can you not want to read this report?

The trouble with trying to read and write about this report is that, as was the case with the Energy Technology Perspectives (which I talked about earlier this year), there is just so much in it to make you think that, agree or disagree, the report is full of interesting information that is worth discussing.

I have been a bit stuck on what perspective to take in this post.  Ultimately I decided to focus on some general points this month (of course with the outlook on nuclear as the key talking point) and then I will undoubtedly use the report for future discussions on more focused topics.

Reading the Executive Summary the report starts off with “The global energy map is changing, with potentially far-reaching consequences for energy markets and trade. It is being redrawn by the resurgence in oil and gas production in the United States and could be further reshaped by a retreat from nuclear power in some countries, continued rapid growth in the use of wind and solar technologies and by the global spread of unconventional gas production.”

When it comes to global energy production, this short phrase pretty much sums it up.  Strong North American oil production, more coal, less nuclear, more renewables and much more gas.  And not surprisingly, this  translates into more difficulty meeting climate change objectives.  It continues, “Taking all new developments and policies into account, the world is still failing to put the global energy system onto a more sustainable pathSuccessive editions of this report have shown that the climate goal of limiting warming to 2 °C is becoming more difficult and more costly with each year that passes. Our 450 Scenario examines the actions necessary to achieve this goal and finds that almost four-fifths of the CO2 emissions allowable by 2035 are already locked-in by existing power plants, factories, buildings, etc. If action to reduce CO2 emissions is not taken before 2017, all the allowable CO2 emissions would be locked-in by energy infrastructure existing at that time.”  Another testament to the continuing lack of progress on meeting the world’s climate change challenges.

And finally when it comes to the future of nuclear power it recognizes the changes in some countries to cut back while others continue to move forward.

“The anticipated role of nuclear power has been scaled back as countries have reviewed policies in the wake of the 2011 accident at the Fukushima Daiichi nuclear power station. Japan and France have recently joined the countries with intentions to reduce their use of nuclear power, while its competitiveness in the United States and Canada is being challenged by relatively cheap natural gas. Our projections for growth in installed nuclear capacity are lower than in last year’s Outlook and, while nuclear output still grows in absolute terms (driven by expanded generation in China, Korea, India and Russia), its share in the global electricity mix falls slightly over time.

I am showing all of the above quotes because in a few words from the Executive Summary, the report says so much.  The figure below shows the key changes in projected energy use from the 2011 WEO.  In summary, as I read this report we can conclude that:

  • Fossil fuel use is thriving.  Clearly North American policies to increase both oil and gas production are very effective.  Coal use is up again globally from the last WEO even with a larger increase in (mostly unconventional) gas use.  Fossil fuel subsidies continue to be the largest of any energy source estimated at $523 billion, more than 6 times that for renewables and a 30% increase from 2010.
  • Renewables use continues to grow without any real demonstration that increasing renewables to that extent is feasible.  Subsidies are at $88 billion and rise to $240 billion in 2035
  • Nuclear is being left behind as the 6% reduction in nuclear compared to 2011 is the largest single change in the new WEO New Policies Scenario.

And this path is taking us down the road to being unable to meet the 2 degree climate change scenario.  After trying everything else in past reports, this year they try to demonstrate that increased efficiency is a potential path to delaying the inevitable and make time for more policy change to support the environment.  This has the potential to extend the 2017 date for lock-in to 2022.  However we can also ask, without a real and substantive global commitment to reducing carbon emissions, what will these extra few years actually achieve?  Most likely – nothing!

So let’s look at the nuclear case in a bit more detail.  Compared to the 2011 scenario, nuclear use is decreasing in those countries with the most to lose, Japan, Germany, Switzerland and even France, while being economically challenged in North America; and rising in the more rapidly growing economies of the east led by China.  This leads to an important question.  Is nuclear power becoming a transient technology that helps countries develop and then once there, can be phased out over time by a policy shift to renewables?  This seems to be a possible theme going forward but in practice nothing can be further from the truth.  It is interesting to note that this past week was the 70th anniversary of the first sustained criticality at CP-1 by Enrico Fermi.  And here we are today with the countries named above all having substantial nuclear programs providing a large and important part of their electricity generation (Japan 30%, Germany 30%, Switzerland 40% and France 75%).  Clearly, with this much nuclear, replacing it is not trivial and will have significant impacts.   Even the WEO acknowledges that “shifting away from nuclear power can have significant implications for a country’s spending on imports of fossil fuels, for electricity prices and for the level of effort needed to meet climate targets.”

And that is what we are seeing today as Germany and Japan wrestle with these impacts as they try to reduce the use of nuclear very quickly.  Based on hysteria following the Fukushima accident, the politicians in these countries (even France) seem to have forgotten what they have achieved since that famous date 70 years ago and why they built such large nuclear fleets in the first place.  Building a successful nuclear program is a major undertaking requiring investment in regulation, infrastructure and industry.  Germany, Japan and France have all benefited from this investment as they developed significant technology, know-how and industrial capability with the result being, in all cases, a very large portion of their electricity generation being economical, clean and reliable.  Reducing its use as a result of a misguided view on nuclear safety will result in a large negative impact to industry and their economies.  In Germany, utilities are suffering financially and in Japan, there is the risk of losing capability and business to the new nuclear powers of Korea and China while having staggering increases in imported fossil fuels and a devastating impact to the local economy.

In fact, looking at the following figure from the WEO shows the bigger story.  Just compare the capacity bar with the energy bar in each case and one thing is clear.  Nuclear power is a key workhorse of the global energy system.  It is by far the most efficient investment as every GW of capacity produces more GWh of energy than every other type of electricity generation.  As I stated in my earlier post on the ETP, one of the reasons for the enormous investment in renewables is that you have to build about three times as much capacity as nuclear to get anywhere near the same energy output – and of course even then this energy is not dispatchable.  But even looking at the use of more tradition fossil fuels, because nuclear fuel costs are very small, they are dispatched before more expensive coal and gas plants and, as the figure shows, 3 times as much coal capacity and almost 4 times as much gas is projected to each only generate twice the energy as nuclear.

It is important to remember that the WEO is not a forecast per se; rather it is a projection of how government policies would look once implemented.  And what we see is a world investing heavily in fossil fuels to protect the status quo while also investing in renewables as a token path to the future.  The fall in nuclear power use in developed countries is an important testament to the ongoing impact of the Fukushima accident on government policies in the west.

While the 2012 projection is less than 2011, nuclear power does continue to grow and in 2035 it is projected to supply 12% of world electricity (13% in 2011 projection).  Yes, it is being left behind relatively but, as I see it, this report clearly demonstrates the importance of nuclear power as a clean, efficient and reliable source of non carbon electricity going forward.  Implementing policies that reduce its use is folly as it definitely will result in expanded fossil use, higher costs, trade imbalances  and higher carbon emissions; all leading us down an unsustainable path.

Therefore the policy answer is not to limit and reduce the use of nuclear energy, but to expand its use because even a small expansion in capacity results in a relatively large increase in energy generated.  And that means that we need to work harder to address the issues resulting from the Fukushima accident in the developed world and remind those governments who are reacting to short term pressures why they went nuclear in the first place; and of the consequences of reducing its use to their societies so they can rethink potential policies that may move them away from this very important part of our global energy mix.