As a solution for climate change – nuclear power is falling behind

Recently, the 2014 edition of the International Energy Agency’s (IEA) Energy Technology Perspectives (ETP) was issued. The ETP is issued on a two year cycle; the current edition takes the World Energy Outlook 2013 forecasts and looks to the longer term out to 2050. With climate change now becoming even more pressing I thought it would be interesting to see the progress over the last two years (I wrote about the 2012 edition back in June of that year). According to the report, as an important contributor to meeting climate requirements going forward, nuclear power is falling behind.

On the positive side, the IEA sees the opportunity by which “policy and technology together become driving forces – rather than reactionary tools – in transforming the energy sector over the next 40 years.” The report looks to balance energy security, costs and energy-related environmental impacts. But in the end it concludes that “Radical action is needed to actively transform energy supply and end use. ”

Why is radical action required? Of all the technologies required to meet the 2D target (this scenario sets a target of only 2 degrees C change as compared to 6 degrees in the status quo scenario), the IEA suggests that only renewables are on track while pretty much every other clean technology is not moving fast enough. Two important technologies not meeting targets are Carbon Capture and Storage (CCS) and Nuclear Power. To no one’s surprise, CCS has yet to be proven and become a viable commercial option to de-carbonize fossil fuel emissions. As for nuclear power; after the Fukushima accident, growth has been slower than previously predicted and is expected to be 5 to 25% below the level required by the 2D scenario in 2025.

This leaves much of the burden on renewables to meet the need for lower carbon emissions. Surprisingly, in the hi-renewables scenario, solar becomes the dominant source of electricity reaching 40% penetration by 2050. Realistic or pipe dream? I don’t know. One thing is certain, (see chart below), with almost half of future electricity generation coming from variable renewables, compared to almost nothing today, the IEA is demonstrating the need for a huge technology transformation in how the world generates electricity.

IEAETP2014ElectricityGenerationbyTechnology

The following chart is the most telling of all. Over the past 40 years carbon intensity (the amount of carbon emitted per unit of energy supplied) has barely budged. Almost no change at all. Yet now we require the carbon intensity to be cut in half in the next 35 years (meaning less than half as much carbon produced per unit of energy supplied). This requires a complete change in how energy is delivered.

IEAETP2014CarbonIntensity

The reason is simple. Fossil fuels still represent 80% of global electricity generation and most of the energy used for transport. To disrupt the curve requires going off fossil fuels to cleaner alternatives. To achieve the 2D scenario, electrification is paramount given the option of generating electricity with clean alternatives. Fossil fuel use must then be cut in half to about 40% of electricity generation and much of the remainder makes use of CCS to reduce its carbon footprint. The report notes that gas must only be a bridging technology to support renewables in the short to medium term as gas still represents a major carbon source. So what’s left? Solar and wind to replace fossil fuels and CCS to make them cleaner.

Of course nuclear power is an obvious candidate to make a larger contribution. It is a mature technology and already is an important source of low carbon energy. Given its energy intensity it is certainly feasible to implement more nuclear power on a very large scale. And even with recent set-backs, there are now clear signs of renewal as the industry puts the Fukushima accident behind it.

For example, China continues to expand nuclear power at an ever increasing pace. Japan has reconfirmed its commitment to nuclear although restarts are slower than anticipated and the ultimate level of nuclear in post-Fukushima Japan remains unknown. Russia is increasing its commitment to nuclear and, of most interest, is becoming a major exporter offering innovative risk and financing structures that have not been seen in the market to date. Other markets are also starting to move; the latest being Hungary which has just approved a new plant for the PAKS site. However some other important nuclear markets are having challenges. Korea has cut back its long term plans and France is looking to limit the contribution of nuclear power in the future.

While nuclear power has challenges with public acceptance, this report notes the commercial issues – economics and implementation risk. As can be seen in the following chart, the IEA estimates nuclear to be the most expensive option after off-shore wind. I have not had time to delve into the details and review the numbers. However, taking this at face value, we know that some projects in the west are not doing as well as they should be. On the other hand, standardized series-build in countries like China and Russia are demonstrating a strong path to lower project costs and risks.

IEAETP2014economics

There is no hi-nuclear scenario in this edition of the report. That is quite unfortunate as a strong renewed commitment to nuclear power is a very good way to help move this plan to achieve a 2D future become a reality. By stating that nuclear power is not meeting expectations, the report lays out a clear challenge. Now it’s time to show the nuclear industry is up to it. If we really want to bend the carbon intensity curve, then more than ever, the world needs more nuclear power as an important part of a low carbon future.

Changing the discussion – It’s all about people

It’s always amazing when a United Nations report that has global ramifications comes out with little fanfare.”  So starts an article in Forbes talking about the most recent UNSCEAR report on the consequences of the Fukushima accident in Japan.  Three years after the accident, UNSCEAR, the United Nations body mandated to assess and report levels and effects of exposure to ionizing radiation has reported and its result could not be more clear.  “The doses to the general public, both those incurred during the first year and estimated for their lifetimes, are generally low or very low.  No discernible increased incidence of radiation-related health effects are expected among exposed members of the public or their descendants.”

This result is in stark contrast to a number of more recent accidents in other industries, all with a large number of fatalities.  Whether it is a plane lost in Malaysia, a ferry sinking in Korea, an oil explosion in Quebec; the list goes on.  Unfortunately there is no shortage of examples of terrible accidents resulting in loss of life.  And yet, in comparison to these many tragic events, it continues to be nuclear accidents that many people fear the most.

But the reality is quite different. When it comes to nuclear power, we have now seen that even in the worst of the worst nuclear accidents (Chernobyl and Fukushima), we can protect people and minimize fatalities from radiation.   In other words, the decades old belief that nuclear accidents are very low probability but exceptionally high consequence; effectively resulting in the end of the world as we know it (i.e the doomsday scenario), is just not the case.

For those that have been reading my blog for a while, it was about a year ago that I wrote about the need for a new paradigm to communicating the risks and benefits of nuclear power for the future with an emphasis on refining the message to reflect current reality.  The message on safety should be:

  • The risk of a nuclear accident is very low and is always getting even lower
  • In the event of an accident the risk of releasing radiation to the environment is also very low; and
  • Even in the unlikely event that radiation is released, the public’s health and safety can be protected.

Of course, this does not mean we should become complacent.    Certainly the industry is doing the right things to make sure a similar accident cannot happen again.  Many improvements have been made in plants around the world to both reduce the risk of an accident and in the event of a severe accident, reduce the risk of radioactive releases.

For example, here in Canada, we have broadened our safety objective to “Practically eliminate the potential for societal disruption due to a nuclear incident by maintaining multiple and flexible barriers to severe event progression”.  Setting societal disruption as the measure is definitely something new as move forward post Fukushima.

As an industry, we are excellent at learning from every event and making improvements to reduce the risk of a similar event in the future.  The global nuclear industry should be proud of its unwavering commitment to safety.

But that being said, while making technical improvements and reducing the risk of future accidents is essential; unfortunately this will be unlikely to result in the public feeling safer.  I would argue that in general, the public already believe the risk of an accident is low – the problem is they also believe the consequence of an accident is unacceptably high.  So no matter how low we make the probability, they will remain afraid of the consequences.  In other words, as we continue to talk about improving technology to reduce risk; we need to enhance the discussion to talk about people and how to both keep them safe (the easy part); and of even more importance, feel safe (now here is the challenge).

Therefore an important lesson from Fukishima, is that accidents, however unlikely are indeed possible.  And it is because of the perceived consequence of an accident that the public continues to be afraid.  In fact, fear is an understatement.  We know that nuclear accidents cause not only fear but outright panic.  And this panic is not limited to people in the immediate area of the plant but is experienced by people all over the world.  Not a week goes by when there is not some news item on how radiation from Fukushima is about to land on the North American west coast.  While there is little risk of any radiation issue, to the public, it continues to stoke fear.

So now that we know that there is little to no health impact from radiation after Fukushima, does that mean the discussion is over?  No, the next step is to address the real health consequence of a nuclear accident – mental and social well-being.  Fear of radiation is a complex issue.  While people will happily accept significant doses of medical radiation as they believe (quite rightly so) this will improve their health, they remain terrified of radiation from sources such as nuclear power plants.

In their report UNSCEAR noted, “The most important health effect is on mental and social well-being, related to the enormous impact of the earthquake, tsunami and nuclear accident, and the fear and stigma related to the perceived risk of exposure to ionizing radiation. Effects such as depression and post-traumatic stress symptoms have already been reported. “

They continue, “The evacuations greatly reduced (by up to a factor of 10) the levels of exposure that would otherwise have been received by those living in those areas. However, the evacuations themselves also had repercussions for the people involved, including a number of evacuation-related deaths and the subsequent impact on mental and social well-being (for example, because evacuees were separated from their homes and familiar surroundings, and many lost their livelihoods).“

Whatwillhappen to me

And this is where we need to do more.  Once we accept that even after implementing our best efforts, there may well be another accident someday, there needs to be increased focus on accident management and recovery.  This means clear guidelines on when to evacuate, what is required to remediate a contaminated area and when it is safe to go home again.  A huge source of fear is the unknown and after a nuclear accident, people impacted are very worried about their futures.  They want to know – will I get sick, how about my children and grandchildren – can I go home again – and if so when?  And basically how and when will I be able to resume my normal life?

UNSCEAR noted that “estimation of the occurrence and severity of such health effects are outside the Committee’s remit”.  Given these are important and significant health impacts; it is time for the industry to take action.  As an industry we have long been leaders in industrial safety.  Now we have the opportunity to be leaders in post-accident recovery psychological research.  We need new research to better understand the impact to people in affected areas following nuclear accidents so we can better plan how to reduce their fear and indeed, have a happy and healthy future. This will lead to better decisions following events based on science rather than short term fear issues. It is important to understand that protecting people means much more than emergency planning to get them out of harm’s way when an accident happens.  It also means meeting their needs right up until they can resume their normal lives.

The most important lesson from Fukushima is not technical.  Of course we will learn how to avoid similar accidents in the future and make plants safer.  But if we really want to change the dialogue and increase public support for the industry, we must also recognize the future is all about people – building confidence and reducing fear.

It’s passion that will lead to brighter nuclear future

Last month I talked about innovation in the nuclear industry focusing on the perception that nuclear is not innovative.  Since then I attended the Canadian Nuclear Association annual conference.  Its theme this year was “Developing the next generation” which in this case focused on developing the workforce of the future.

While the discussion at the event was about Canada, the theme can be applied to many countries.  Essentially, it was noted that the industry has numerous opportunities that offer well paid interesting work for the long term.  And, of more importance it was made clear that the industry is only as good as its people; hence the need to attract the best and brightest.

With all the good discussion, what caught my interest was the guest breakfast speaker, Taylor Wilson, known has the boy who played with fusion.  At 19 years old, he gave a great talk (already having given two TED talks) about his passion for all things nuclear.  I am not going to discuss Taylor’s achievements or strong technical skills, both of which are certainly impressive; and he is also extremely articulate proving that scientists can indeed communicate well.  But what really got me excited was his passion for nuclear science.  This passion ignited the audience by reminding us all of our own passion for the industry.

I remember being a young student studying nuclear engineering at RPI in Troy New York during the 1970s.  What drove me to go into nuclear was the mystery and excitement of this still relatively young industry.  I wasn’t looking for a job; I was looking for a future.  The oil shocks had happened and it was clear that the world needed alternate energy.  Being able to provide almost limitless energy to power the world, nuclear power seemed to be the solution and I wanted to be part of it.

I was not unique.  Many of my colleagues; many of whom (older than me) were the pioneers of nuclear energy, were inspirational in their dedication and passion for nuclear power.  I am not talking about the early great scientists who harnessed the atom, but rather the next wave of people, both technical and political who drove the industry forward securing commitments to, and then building the 400 plus Generation II reactors in service today.  This past December was the sixtieth anniversary of President Eisenhower’s Atoms for Peace speech to the United Nations.  This speech launched a new industry around the world.  I would name some of those who contributed but they are too many and I don’t want to leave anyone out.  Rather, I invite you in your comments to note who inspired you either to enter the industry or along your career to keep on moving forward.  (Some of the pioneers of the Canadian industry are listed here.)

And they succeeded.  They developed one of the most important energy technologies known to man.  In less than fifty years, an idea was turned into a commercially viable energy technology meeting about 12% of global electricity.  And that number, of course, is deceptive since about half of the countries that rely on nuclear energy use it for 20% or more of their electricity supply.

Of course there have also been numerous challenges along the way that saw the industry slowdown in the latter part of the twentieth century.  Recent developments as the world looks for solutions to climate change has re-ignited interest in nuclear power as a part of the solution.  This is also in the context of the 2011 accident in Japan which once again raised fears of the industry and its potential negative impacts.

For most of us who have spent our careers in the nuclear industry, we remain just as passionate today as we were when we were young and our belief in the benefits that nuclear energy bring to society continues to be strong.  There are others who have been worn down by the relentless effort required to sell these benefits and the years of attacks against the industry.  The result is a defensiveness along with a weariness that has reduced efforts to move forward as many in the industry focus on survival.  It is now time for a new generation of passionate young people like Taylor Wilson to take this industry into the future. I know they exist.  There is the nuclear Young Generation Network (YGN) with chapters around the world.  For those of you YGN members who read this, please  give your views.

It is not just about opportunities for employment, but rather about opportunity to make a difference.  The question becomes, not how do we find the nuclear workers of the future – but how do we inspire the passion in a nuclear future that we all had (and continue to have) when we started our careers to attract the best and brightest to our industry going forward?  I would guess that if you went to any university graduating class and asked for the 10 most innovative and exciting industries of the future, we would likely not make the list.

I talk about communications in this blog quite often.  But most of the time I talk about how we can promote the industry and reduce the fear of radiation in the public.  But we must also consider how to communicate to a new generation of potential nuclear industry professionals the excitement, innovation and societal imperative so that they can develop their own passion.

I love working in this industry and I wouldn’t change my experiences for anything.  Now it’s time to help build the industry of the future – and that means inspiring young people to take a leap of faith and jump on board.

The importance of innovation to the nuclear industry

A comment caught my attention at a recent nuclear industry event.  The comment was that a hi-profile agency with a mandate to do research in advanced technology across industries had no interest in attending any events to learn more about nuclear power – primarily because “nuclear is not innovative”.  In reality, there are numerous examples of how the nuclear industry has and continues to improve through innovation. 

In exploring this comment, what we found was a belief (likely more prevalent than we would like) that renewables like wind and solar as well as various storage technologies are moving forward, innovating to become the energy source of the future, while old technologies like nuclear are past their prime heading into old age.

The discussion then moved to future reactor designs as proof of innovation in the nuclear industry.  Look at fast reactors, thorium reactors or even SMRs.  Although these are all interesting, it was pointed out that these represent “novelty”, not innovation.  And to argue that a novel design is what is required to save the industry (although they will come) gives the message that today’s designs are just not good enough – and that is absolutely not true.

The public looks at nuclear power and sees a staid industry, some think in decline, that is building technology that has been around for 50 years.  Granted some nuclear projects continue to be built above budget and over schedule, while other “newer” technologies continue to improve and reduce cost and schedule – as would be expected when developing technologies of the future.

However, there are numerous examples of innovations across the nuclear industry.  For example, China has made improvements to the Daya Bay CPR1000 design at Lingao.  They increased the output by about 100 MW through an improved turbine, and made great advancements to the control systems by adding distributed control.  At Nuclear Power Asia in Vietnam this past month, a presentation by Mitsubishi showed how they improved their construction schedule from 77 months to 50.5 months from the Ohi 1 project to Ohi 3.   Westinghouse is learning lessons from its experience in China and is applying them to their AP1000 projects in the US using advanced modular construction technology. And here at home in Canada where Bruce Power, whose tag line is “Innovation at work”, has found ways to increase the life of its reactors well beyond what was thought possible only a few years ago.

The analogy can be made to cars.  The cars we drive today are very similar to those we drove 30, 40 and even 50 years ago.  Four wheels, combustion engine, rubber tires.  But are they really?  In fact almost nothing is the same.  Our cars today are full of electronics controlling the engine; the bodies no longer rust away in a few short years, safety has been greatly improved through air bags and other enhancements; and tires rarely go flat so that many models no longer carry spares.  In fact technology has advanced in leaps and bounds in the cars we drive every day.  And even though we are now looking at next generation technology such as electric and hydrogen powered cars, these are still novelties.  These types of advancements are not required to innovate our vehicles.  In fact the opposite is true.  It is the innovation in the everyday systems in our cars that continue to make them better.  And the magnitude of these improvements is staggering.

Somehow this message is not getting through with our nuclear plants.  It may be because we operate in a very rigorous regulatory environment that forces nuclear utilities to be extremely conservative as change creates risk.  Add to that the magnitude of the capital investment in a nuclear plant and the conservatism increases further as the risk of an advancement is always taken into consideration when looking to the future.

That being said, the operators of today’s fleet of nuclear plants have made incredible improvements to the operating fleet.  This is why capacity factors (percent of maximum possible production) today can be 90% +.  Back in the 1980s, a capacity factor in the mid 80% range was considered excellent.  But no more.  Today we expect better performance from our plants and we get it-through everyday innovation!

US-Nuclear-Capacity-Factor0011

Source: www.nei.org

When it comes to operations, the improvements are easy to show through improved performance of the operating fleet.  The issue we have had in the west is an insufficient number of new build projects to show the innovation that is happening every day in this industry when it comes to new projects.  New build in western countries have had a rocky start after decades of not building.  But as we move forward, this too will improve.

For new projects, we need to not only be building to budget and schedule, but also showing that costs and schedules are reducing with time.  The Koreans, Chinese and Japanese have clearly demonstrated the benefits of standardized fleets to reduce costs and schedules as they build more and more plants.  We see them innovating as they learn from each project and move on to the next one.  We are already seeing improvement in the US as the Summer plant is taking advantage of lessons learned from the Vogtle plant; and both are benefiting from the experience in China.

We must be able to demonstrate that today’s nuclear technology is a technology of the future and that advancements are indeed coming that make every project better than the last.  If an agency looking to the future of energy thinks there is no innovation in nuclear, then we need to be more vocal about our achievements.  We need to celebrate our innovation.  And we need to continue to invest in further innovation because there is always room to get better.

Our strength is through our performance.  And our performance continues to get better through innovation, each and every day.  For those of you who have good examples of where innovation has benefited the industry, please post them as a comment.

When it comes to our need for electricity, reliability is essential.

As we come to the end of another year, it is not a nuclear issue that I want to discuss but rather the broader issue of our need for reliable electricity.  Last month I started with a quote from the IEA’s World Energy Outlook 2013 highlighting how important energy has become to our society – affecting the economics of nations and our environment as well as our daily way of life.

Over this holiday season in North America the importance of electricity to our very survival has become more evident.  On the Friday before Christmas the northeast United States and Canada were hit with a massive ice storm.  Hundreds of thousands of people lost power.  The cause was primarily due to power lines being affected both directly by intense icing as well as by debris from trees and other items that fell onto the lines as they became heavy with ice causing the lines to fall.

PJT-Icestorm-18.jpg

And here we are days after Christmas and while most households have had their power restored (many after more than 5 days without), thousands continue to wait.  This is different from other extreme weather events such as hurricanes that have been responsible for mass destruction of homes and infrastructure.  This ice storm, while also an extreme weather event, has only caused power loss as its lasting effect.  The result is we are able to specifically see the importance of electricity to our modern societies.

So what is the impact of a prolonged loss of electricity?  Frankly it is very difficult for those without – especially for those most vulnerable – the elderly, the sick and those without friends or family nearby to take them in.

Living a large city in a cold climate, just imagine your home without heat in subfreezing weather, no power for the refrigerator or freezer (although outdoors can work), no water to flush the toilet or bathe or even more importantly drink; and you have the makings of a catastrophe – people freezing and hungry without the basics required for survival.  And to make matters worse it is over the holiday season when most had plans to be with family.  In some cases large family holiday meals were no longer possible as the emphasis was on finding ways to stay warm.  The added downside of the season is that on Christmas almost everything is closed, no supermarkets, very few restaurants; no services of any type.

On the positive side, the number of people without power is now in the minority so there are many options for them to seek help and get warm.  But others continue to struggle.  The news has recently reported on police and fire departments having to visit large apartment buildings and take elderly sick residents down numerous flights of stairs to safety.  These people have been stuck in their cold apartments for days without food or water.  With no one to check on them, their lives were at risk.

As stated earlier, the cause of this mayhem is related to the transmission and distribution system failing in the weather, not generation.  But the point to be made is that without electricity in our cities; it would only take days until the population would need to find ways to feed and warm themselves on mass.

So it is pretty obvious that we need to have reliable electricity supply to keep society working.  And reliable supply means robust generation and distribution.  Our aging infrastructure can no longer be left to decay further so that with every extreme weather event, we take days or weeks to recover.  After the major blackout in the North American northeast a decade ago, the focus was on ensuring system reliability.  The rules changed and all North American utilities now adhere to these rules, making our system better.  But here we are a decade later and the issue has changed.  It is no longer about reliability in general, but the ability to withstand extreme weather events.  And most of all our ability to recover when the system is damaged during such events.

And of course we have the issues associated with individuals that oppose what is necessary to keep our system running.  For example, power lines have fallen when tree branches have damaged them.  While simple measures like pruning may be the cost-effective way to protect power lines, it can carry a public-relations price. As stated by the CEO of Toronto Hydro “You can imagine … our arborists show up on the curb and knock on the door and say ‘We’re here to cut your branches down.’ They’re not necessarily a welcome news,” he said. “So it’s really finding that right balance.”  This shows that no matter what the issue, there are always those opposed (as with those opposed to nuclear power); but these are also usually the first to complain when they lose power and need their lines restored.

So while this is not directly about generation or nuclear power, it is important to remind ourselves of the importance of reliable supply as we continue the debate on how we want to generate our electricity going forward.   Robust, reliable baseload electricity is important.  And this is where nuclear power plays a very important role. We also talk about economics and environment.  Both essential – so how can we meet the challenge of  having reliable, economic and environmentally benign electricity?

As we prepare to enter a new year, let’s remember that fossil fuels like coal and gas are reliable, can be economic, but impact our environment.  Renewable sources like wind and solar are good for the environment but can be costly and unreliable.  Nuclear Power is an important source of electricity that can provide large amounts of clean, reliable and economic electricity to keep our society moving.

I hope that all power is restored to those without as soon as possible so they can enjoy what is left of the holiday season.

Wishing you all a very happy and healthy 2014

Meeting the energy needs of the 21st century – is it time for a real nuclear renaissance?

As I started to read this year’s World Energy Outlook (WEO 2013) from the International Energy Agency (IEA), it was the very first line in the executive summary that caught my interest.  The report starts out with “Many of the long-held tenets of the energy sector are being rewritten.

It then goes on to explain: “Major importers are becoming exporters, while countries long-defined as major energy exporters are also becoming leading centres of global demand growth. The right combination of policies and technologies is proving that the links between economic growth, energy demand and energy-related CO2 emissions can be weakened. The rise of unconventional oil and gas and of renewables is transforming our understanding of the distribution of the world’s energy resources. Awareness of the dynamics underpinning energy markets is essential for decision makers attempting to reconcile economic, energy and environmental objectives. Those that anticipate global energy developments successfully can derive an advantage, while those that fail to do so risk making poor policy and investment decisions.”

What is clear is that energy is important!  Most of all there is change in the air – ignore it at your peril.  And with change comes opportunity.  This is where I want to focus my discussion this month.  But before I go on, I think it is useful to summarize the key points from the report to further clarify the paragraph above. The WEO 2013 is concluding the following:

  • The centre of gravity of energy demand is switching decisively to the emerging economies, particularly China, India and the Middle East, which drive global energy use one-third higher.
  • As the source of two-thirds of global greenhouse-gas emissions, the energy sector will be pivotal in determining whether or not climate change goals are achieved.
  • Large differences in regional energy prices have started a debate about the role of energy in unleashing or frustrating economic growth.
  • Energy price variations are set to affect industrial competitiveness, influencing investment decisions and company strategies.
  • Countries can reduce the impact of high prices by promoting more efficient, competitive and interconnected energy markets.
  • A renewed focus on energy efficiency is taking hold and is set to deliver benefits that extend well beyond improvements in competitiveness.
  • Enhancing energy competitiveness does not mean diminishing efforts to tackle climate change. Renewables account for nearly half of the increase in global power generation to 2035, with variable sources – wind and solar photovoltaics – making up 45% of the expansion in renewables.
  • Coal remains a cheaper option than gas for generating electricity in many regions, but policy interventions to improve efficiency, curtail local air pollution and mitigate climate change will be critical in determining its longer-term prospects.
  • Market conditions vary strikingly in different regions of the world, but the flexibility and environmental benefits of natural gas compared with other fossil fuels put it in a position to prosper over the longer term.

So there you have it.  The fastest growing economies have the fastest growing demand, high energy prices are slowing growth in some markets and giving an economic advantage to others with lower prices; and climate change is having an impact on energy decisions.

The above makes it sound as if the path to a low carbon future is built on more renewables and gas.  But is it really?  Looking at the following chart we can see that in the OECD countries where demand growth is modest and electricity supply is already robust, gas is the go-to fuel both due to cost and as a cleaner alternative to coal; and renewables are the supposed clean generation of the future.  Not surprisingly in the non-OECD countries where demand is growing much more quickly (read mostly China!), they are doing everything they can to develop all kinds of supply – including more coal, more gas, more renewables and yes, more nuclear.

IEAWEONov2013a

So what does this mean for nuclear power? According to the IEA, “Nuclear power generation increases by two-thirds in the New Policies Scenario, reaching 4,300 terawatt-hours (TWh) in 2035. Demand is driven heavily by expansion in just a few countries: China accounts for around half of the global increase; Korea experiences the next largest increase over the projection period (the only OECD country to see appreciable growth), followed by India and Russia. Overall, non-OECD economies see their share of global demand for nuclear power jump from less than 20% to nearly 45% in 2035. While prospects for nuclear power at the global level are now less uncertain than they were two years ago, there are still key issues that remain unclear. These include the possibility of further changes in government policy, implications of the ongoing safety upgrades for plant economics and public confidence, and the impact of increased competition from shale gas.”

It should not be a surprise that those countries with the largest demand growth see a large benefit from increasing the use of nuclear power.  They need clean reliable baseload and nuclear meets this need.  In the more advanced OECD countries, many of these already have significant nuclear fleets (80% of current nuclear capacity is in OECD countries), have lower baseload growth and can (or at least they think they can) look at other alternatives.  Gas is replacing coal as a cleaner fossil option so long as it remains competitive and the challenges of new nuclear coupled with low demand growth put it more on the back burner.

IEAWEONov2013b

But is this the right path?  As I said last year when I reported on the WEO 2012, it is important to remember the WEO is not a forecast per se; rather it is a projection of how existing and potential government policies would look once implemented.  And what we still see one year later is a world investing heavily in fossil fuels to protect the status quo while also investing in renewables as a token path to the future.  Of more importance, the WEO shows a path to meet climate change goals that is based on efficiency to lower demand, movement from coal to gas and CCS technology to clean up some of the coal and then more renewables.

What goes unsaid is how this is fantasy.  Not that the world will continue down the path of burning fossil fuels for our electricity, but rather that we can do so and meet climate goals. The 2013 WEO New Policy scenario “leaves the world on a trajectory consistent with a long term average temperature increase of 3.6C, far above the internationally agreed 2C target”.   In their 450 scenario where the target is 2 degrees, there is more renewables, more conservation, more technology to clean fossil fuels and yes, a little more nuclear.

Given the need to decarbonize the electricity sector and the limits to using wind and solar (about half the renewable additions), it should be obvious that nuclear be a stronger option.  Yes, currently in North America low gas prices are challenging its competitiveness while in Europe, green ideology has a larger impact.  There is a onetime carbon improvement as coal is replaced by gas; but then gas becomes the largest carbon producer on the system – so where do we go from there?  And renewables will remain intermittent and likely costly for some time to come.  Nuclear power is clean, reliable and in most cases, economic; but of most importance – abundant.  Yes, in a resource constrained world, the amount of electricity we can potentially generate with nuclear power is almost limitless.  So why don’t we see more of it in the developed world?

The answer is that we still don’t have the political will.  And that comes from lack of public support.  Just this week the World Bank reiterated its policy that they don’t support nuclear power – even though they support all other forms of electricity generation.  Continued negative press about the status of Fukushima keep the public on edge.  For example this past month TEPCO started to remove the used fuel from the Unit 4 spent fuel bay.  This should have been a good news story yet most stories made it seem like a horrifically dangerous undertaking (and of course it is not).

The WEO makes the case that government support is what drives nuclear.  “The rate of expansion of nuclear power continues to be mainly policy driven. It expands in markets where there is a supportive policy framework, which in some cases actively targets a larger role for nuclear in the mix in order to achieve energy security aims. But policy frameworks can also hinder or eliminate nuclear power, often as a result of public opposition: even where there is no explicit ban, long permitting processes, such as in the United States, can significantly hinder development by increasing uncertainty about project completion and increasing costs.”

I was listening to a radio interview this past week with climate change scientist Richard Peltier.  [Interview starts at about 31:40 in the link].  He makes a strong case for getting the message out about scientific consensus.  While he notes that between 95 and 98% of scientists agree on the science of climate change, the press reports make it seem there is much more disagreement than there really is with the result that the public is confused.  The answer is to get out and speak at the grass roots level. Governments will not strongly support policies that battle climate change until the public believes it is necessary.  The same is true for nuclear power.  Governments will not strongly support increasing its use until the public are in agreement that it is safe and necessary.

We are seeing some progress.  In Pandora’s Promise, five environmentalists are now convinced of the advantages of nuclear power and they are actively advocating its use.  This past month four other environmentalists have released an open letter calling on world leaders to support development of safer nuclear power systems. In their letter they state, “As climate and energy scientists concerned with global climate change, we are writing to urge you to advocate the development and deployment of safer nuclear energy systems. We appreciate your organization’s concern about global warming, and your advocacy of renewable energy. But continued opposition to nuclear power threatens humanity’s ability to avoid dangerous climate change.”

Some governments are also taking on the challenge.  In the UK there is pretty much political unanimity that new nuclear is required to meet their climate goals.  The result is strong political support for nuclear new build.  A recent quote by Hergen Haye, Head of New Nuclear & Strategy, Department of Energy and Climate Change (DECC), UK government “To replace Hinkley alone, we have to build 6000 wind turbines. Nuclear will help us to cut costs and to face the other environmental challenges. We cannot do without nuclear because renewables will not do things alone without making electricity bills rise.” (21 November 2013 in Brussels).

In France, after pandering to the greens and committing to close Fessenheim, the French government is finally saying that there will not be more closures. We see strong political support where nuclear is needed most in China, Russia and India although Korea is wrestling with their future plan due to recent scandals.

I come back to the first line of the WEO 2013, “Many of the long-held tenets of the energy sector are being rewritten.  This is a time of great opportunity.  So let’s make sure nuclear power is playing its increasingly important role by providing clean reliable generation to support economic growth and a brighter more secure future for us all.

The British are coming – new nuclear committed in the UK

After many years of effort, this month it finally happened. The UK government and EDF Energy, the French-owned UK integrated energy company, agreed to a strike price making the first new nuclear build in the UK in a generation, at Hinkley Point C, a reality.

It was a long hard road.  New nuclear first came up about a decade ago when it became clear that Britain’s nuclear fleet was aging and would soon need to be retired.  At that time British Energy was advocating to replace the existing fleet with a new fleet over the coming two decades.  Unfortunately the timing was not right.  Late in 2002 British Energy got into severe financial trouble requiring a significant restructuring to keep it solvent and early in 2003 the British government declared war in Iraq.  Both of these events made it difficult for the then Labour government to take on the issue of new build nuclear.  So in 2003 the Energy White Paper issued by government focused on reducing carbon emissions primarily with renewables and nuclear was but a footnote as government declared its intention to “keep the nuclear option open”.

What a difference a decade makes.  Over the ensuing years as it became clear that renewables on their own would not be able to carry the load if carbon targets were to be met and concerns about security of supply as the UK became a net importer of energy (primarily Russian gas); once again government turned to nuclear energy.  The history of events over this decade it too long to describe here although I think it would make an excellent business or public policy school case study.

Slowly the issues were tackled one by one through aggressive policies that resulted in among other things:  EDF Energy buying British Energy, the creation of a generic design approval process by the regulator, changes to the electricity market to support non carbon producing projects to be built; and most of all – continuing effort to support positive public opinion even after the Fukushima accident in Japan.

And this is all in the context of the UK slowly and deliberately dismantling its domestic nuclear industry.  The UK was an early leader in the development of nuclear power in the 1950s.  Over the next 40 years it developed a large domestic infrastructure culminating with the transition to PWR technology at Sizewell B to the extent that in the 1990s BNFL actually bought the Westinghouse nuclear business – Britain was back in the nuclear business as a vendor.

Yet over the past decade, Westinghouse was sold to Toshiba, British Energy was sold to EDF and British Nuclear fuels Limited (BNFL) was completely dismantled (all at great profit to government).  The new UK nuclear industry is comprised of a domestic manufacturing and services sector using foreign technology with plants being built by new nuclear operators also owned by foreign companies.

After all the hard work, the agreement reached this week is of tremendous importance to the global nuclear industry for a number of reasons.

The UK is forging ahead with a strong nuclear program while others in Europe are going in the opposite direction. Germany is abandoning its nuclear industry and even France is looking to reduce its reliance on nuclear over time.  The lesson learned here is that need trumps all else.  The UK is strongly committed to reducing carbon emissions; recognize they can’t do it with renewables alone and are not prepared to become overly dependent upon fossil fuel imports.

The project is being built in a liberalized (deregulated) market.  Although there is much discussion about subsidy being provided by government, this project will demonstrate that a new nuclear plant can be built with outside investment in a western open market.  The CFD (contract for difference) model is necessary to provide the stability needed to invest the huge sum of money required (estimated at £14 billion) with a very long payback period.  In Canada this model has been used successfully to refurbish the Bruce Units 1&2 reactors but this will be the first time it is used for a longer duration and higher cost new build project.

While some are critical of the price (€92.50 /MWh) it should be clearly noted that this price is below all other forms of carbon free electricity even if it is higher than imported gas at the moment.  Just imagine trying to set a rate today for a project coming into service in 2023 and then lasting for 35 years.  And most of all, it has been reported that EDF Energy is expecting about a 10% return on its investment – very reasonable given the expected risk profile of a large nuclear project, especially with the experience so far in Finland and in France with new build.

So why can EDF Energy take such a risk?  Primarily because this will be the 5th and 6th EPR built and the third project in Europe after Finland and France.  At this point, the design is well developed, the supply chain is in place and the costs are well understood.  What is new is that it is to be done in the UK and there will be new local suppliers likely taking on a significant scope.

The UK government has accepted a significant Chinese investment in the project.  CGNPC, the Chinese operator of a number of nuclear plants and the constructors of the two EPRs at Taishan and its Chinese partners will bring about 30 to 40% of the money needed for this project.  This is huge!  First of all it is a clear acceptance of the size and strength of the Chinese nuclear program – CGNPC has the most active nuclear construction program anywhere.  And it opens up the potential to ensure the expertise from the Taishan project, arguably the most successful EPR to date, will be available to support Hinkley Point C.

The public is supportive of this projectPublic support for new nuclear in the UK has become somewhat more positive in recent years, with similar proportions of people now supporting (32%) and opposing (29%) the use of nuclear power, compared to 26% (supporting) and 37% (opposing) in 2005.  And of more interest, a similar number of people want to continue nuclear at current levels or with expansion (43% in 2005, 46% in 2010 and 44% in 2013), while fewer people now want to see nuclear power phased out or shut down (50% in 2005, 47% in 2010 and 40% in 2013).  This is a result of a number of factors. First, there is a need for energy and nothing drives support more than worrying if the lights will go out.  Second, the environmental sector is behind nuclear.  The British are very serious about their commitment to reducing carbon emissions.  George Monbiot came out in favour of nuclear energy within a month of the Fukushima accident.  Mark Lynas has become a strong supporter and has been profiled in the recent documentary “Pandora’s Promise”.

So what can we all learn from this process?  First of all developing new nuclear takes time.  With a decade of effort behind this agreement, the time it took to reach agreement is just as long as the anticipated time to build the plant.  A decade to get ready and now a decade to get the project into service (scheduled for 2023). Amazing isn’t it?

So to all of our friends in the UK, you have reached a critical milestone on your journey.  Keep up the good work and we wish you all the best as you move to the next phase of your new build programme.

While the press is reporting doom and gloom in Japan, progress is being made.

Over the summer we talked about Pandora’s Promise, where 5 prominent environmentalists had changed their mind from being against to being supportive of nuclear power.  They visited Chernobyl and Fukushima, explored the realities of the technology, sought the scientific truth and came away supportive.

That being said, looking at the news over the past few weeks, it would appear that the crisis at the Fukushima nuclear plant in Japan is getting worse, not better.  But is this really the case?

In late August, TEPCO reported a contaminated water leak from storage tanks for water used to cool the reactors.  Articles with headlines like “Fukushima operator reveals leak of 300 tonnes of highly contaminated water” start off with “Frantic efforts to contain radioactive leaks at the wrecked Fukushima Daiichi nuclear power plant have been dealt another blow after its operator said about 300 tonnes of highly contaminated water had seeped out of a storage tank at the site.”  “With regard to TEPCO’s handling of contaminated water, it has been just like whack-a-mole,” said industry minister Toshimitsu Motegi, in reference to the anarchic fairground game in which players bash creatures that pop up from random holes.  And finally Japan raised the severity level of the event from INES 1 to INES 3.  The inference is that the situation at the plant remains grave and that we should continue to be afraid of potential consequences to the environment and most of all to the Japanese people.

Then in mid September we saw headlines such as “Japan to be nuclear free again as last reactor goes offline” reporting that Ohi 3& 4 the only two reactors to be restarted after the Fukushima accident are now down for routine maintenance.  Again, implying that Japan is going down a path to no nuclear for the foreseeable future.

And finally, only a week or so ago, Prime Minister Abe visited the Fukushima site to provide assurance to the world that the situation is under control.  To achieve this objective, he said “I’ve urged Tokyo Electric Power Company to deal with the contaminated water leakage as its priority. I gave them three demands. These demands include earmarking discretionary funds that managers on site can use to implement necessary safety measures.  It also includes a deadline to complete the purification of waste water stored in tanks at the plant and decommissioning the idle No 5 and 6 reactors and concentrate efforts to solve problems”.

Looking at the above press stories, it is hard to see a silver lining in what is going on in Japan.  But progress is being made.

The new regulator, the NRA, is closely monitoring progress at the site.  In a presentation to the IAEA this month, they reported that on August 14, TEPCO’s implementation plan for clean up at Fukushima was approved and that Fukushima Daiichi is now under the systematic regulatory system with NRA oversight going forward.  With respect to the recent water leaks, yes, there have been issues containing the large amount of contaminated water.  As for the 300 tonne leak reported in August, it was stopped and cleaned up.  And there is a plan to reduce the risk of new leaks.  The volume of water to be managed is large and the issues are not trivial.  But while there was a significant reporting of the leak and its apparent radioactivity, there was little reporting that most of all the sampled sea water remains under the detection limits for radiation and where there has been some detection, the levels have not changed following the leak – and that they remain well below allowable limits.

Fukushima is not the only lingering issue following the earthquake and tsunami of March 2011.  Remember the tsunami killed more than 19,000 and displaced over 300,000 (about half those displaced were due to Fukushima the rest due to their homes being destroyed by the tsunami).  Recovery from such a natural disaster of this magnitude has been slow and painful.

But while the press continues to feed the fear, in reality, nobody died from radiation from the Fukushima accident and no one is likely to die in the future from radiation.  It is the fear that is most damaging to people and their health and the continuing dramatic reporting of potential danger without context is not helping.  As a result of such reports a South Korean airline cancelled flights to the area, Tepco’s stock price plunged and Tokyo’s bid for the Olympic Games in 2020 was put in jeopardy (although they did succeed but only after Prime Minister Abe gave assurances as to the safety of Fukushima).  Unfortunately it also leads to governments making decisions not based on the scientific realities but to appease the fear – which usually does the opposite as it confirms the need to be afraid.

Unnecessary fear was addressed recently by a number international radiation protection experts who have written messages to the Japanese people to explain the health impacts of the Fukushima accident.  These are posted on the web site of Prime Minister Abe.  Of importance, the United Nations body, UNSCEAR, expects that no resident of Fukushima prefecture would be exposed to more than 10 milliSieverts over their entire lifetime.  This is far below any possible threshold for potential future cancers.  As stated by Gerry Thomas of Imperial College in London, “Worrying about what might happen can have a very bad effect on quality of life, and can lead to stress-related illnesses. All scientific evidence suggests that no-one is likely to suffer damage from the radiation from Fukushima itself, but concern over what it might do could cause significant psychological problems.”

But in spite of the fear, in spite of the ongoing challenges at the site, Japan continues to move forward.  Whereas one year ago, it was reported that the previous Japanese government was looking to eliminate all nuclear power from Japan by 2040, there is now recognition of the importance of nuclear power to Japan and its economy.  Plans are now in place to restart most if not all of the remaining nuclear plants over the next two to three years.  Japan is doing its best to learn from this event and now plans to have the safest nuclear program in the world.  To that end, the new regulator, the NRA, has issued its new safety standards in July of this year.  Already 14 units have applied for restart under these new standards.  This includes two of the most advanced BWR units owned by Tepco.  It will take months to review these applications but we can expect to see restarts as early as later this year and certainly early in the new year.  Back to the gloom and doom news about Ohi 3&4 going down.  It should be understood that when their operation was approved following the accident it was under the old rules.  Now they will have to show compliance with the new rules before they go back up and this will take some time – but they will return to service.

The Japanese people are still suffering after the great earthquake and tsunami of March 2011 and the subsequent effect of the resultant accident at Fukushima.  Most of all the suffering is a result of fear – fear of the unknown – and fear fueled by the fact that people have lost trust in their government.  The Japanese people trusted the authorities to safely manage their nuclear program and now feel this is not the case.  Not knowing who to trust increases the fear – and the psychological impacts that comes along with it.

Our last blog was mostly about Germany.  The contrast with Japan is stark.  The Fukushima accident happened in Japan – not Germany.  The people are suffering in Japan, not Germany.  Prior to the accident both countries had about 30% of their electricity generated by nuclear power.  Japan went to zero as it struggles with the aftermath.  Germany shut down about half its fleet immediately and still has nuclear providing much needed power as they work to transition.  Japan is an island where all other forms of energy have to be imported at high cost to the people and their economy.  Germany is part of the European grid and can easily import power and fossil fuels – and in fact are building new coal stations to cope.

But most of all, the German people have decided they don’t want nuclear in the future believing it is an unsafe technology although they have had no negative experience in Germany with their plants.  Yet, in spite of ongoing issues at Fukushima the Japanese government is pragmatic and supportive of restarting reactors.

It is certainly not easy for Japan or the nuclear industry to recover from the events of March 2011.  A lingering distrust of authorities remains and that is the industry’s biggest problem everywhere. I admire Japan and I hope that they can progress to reduce the public fear while rebuilding their nuclear program to have a strong electricity system for the future on a foundation of safety and transparency.

If we don’t make decisions based on science…….what else is there?

I have written much about the strength of our beliefs and how they influence important decisions.  A case in point is the decision to close nuclear stations early in Germany.  As we in the rest of the western world try and understand the German approach to eliminating nuclear power on the road to their Energiewende (energy transition), we must remember that this plan started in 2010, a year before the Fukushima accident.  This energy transformation is a monumental task and a source of pride to most Germans.  It has a very aggressive target of reducing emissions by 80 per cent and providing for 80 per cent of the country’s electricity consumption from renewable sources by 2050 all while “aiming for a market-oriented energy policy that is free of ideology and open to all technologies, embracing all paths of use for power, heat and transport.

Much has already been said about the challenges along the way.  We now know that raising renewables quickly to as high a level as Germany has done has an impact on the stability of the system; is severely affecting the electricity markets at times when high levels of subsidized wind and solar drive down prices for all other forms of generation risking putting conventional generators out of business; all while increasing fossil generation in the short term at least to make up for lost nuclear with a resultant increase in carbon emissions.

It wasn’t supposed to be this way.  As stated in the 2010 policy paper, the purpose of the policy is to secure a reliable, economically viable and environmentally sound energy supply for the 21st century.  While targeting renewable energy to account for the biggest share in this future energy mix; in 2010 it was also accepted that nuclear energy would be a bridging technology on this road.  In fact, the plan made maximum use of the existing nuclear fleet during the transition.  Look at the following excerpt of the policy on the continued use of nuclear energy.

A limited extension of the operating lives of existing nuclear power plants makes a key contribution to achieving the three energy policy goals of climate protection, economic efficiency and supply security in Germany within a transitional period. It paves the way for the age of renewable energy, particularly through price-curbing impacts and a reduction in energy related greenhouse gas emissions.

The operating lives of the 17 nuclear power plants in Germany will be extended by an average of 12 years. In the case of nuclear power plants commissioned up to and including 1980 there will be an extension of 8 years. For plants commissioned after 1980 there will be an extension of 14 years.

Additionally, the regulations on safety requirements for German nuclear power plants will be expanded, with requirements remaining at the highest technical level, in the framework of a 12th amendment to the Atomic Energy Act.

The extension of operating lives also creates the opportunity to increase financing in the fields of renewable energies and energy efficiency. To this end – in addition to the tax on nuclear fuel limited to the end of 2016 – a contractual agreement will be concluded with the operators of Germany’s nuclear power plants on absorbing additional profits resulting from the extended operating lives.”

In summary they want to get rid of their nuclear plants while also acknowledging they are currently both very economic and safe. Therefore nuclear plant operating lives would be extended to make more money generating more taxes to pay for the energy transformation to enable nuclear to ultimately be eliminated.

And then it happened, the accident at Fukushima.  The result; this plan was abandoned and 8 nuclear units were shut down immediately while the remaining 9 will no longer get life extensions.  This makes for a much harder transformation with coal use having increased from 2011 to 2012 with most electricity continuing to be generated from fossil fuels followed by nuclear (at about 16% now about half of its pre-Fukushima peak of around 30%).  Acknowledging that Fukushima increased the fear of nuclear, is it rational to accelerate the removal of nuclear from the system when a plan was already in place to eliminate it; to the short term detriment of emissions and costs?  But what is rational?  If it means exhibiting behaviour consistent with your beliefs, then this decision may indeed be rational.  But is it reasonable to not challenge one’s beliefs to determine if they are valid at times like this?

And hence, the film Pandora’s Promise.  I was able to attend a showing where Robert Stone was also there to take questions from the audience.  It made for a lively discussion and an overall fun evening.

First and foremost, I found it absolutely riveting to see the transformation of these five environmentalists as they came to understand the facts about nuclear energy.    They talk about being a member of the environmental movement and how it went without saying that one would also be strongly opposed to nuclear power.  After all, it was an evil technology and radiation kills.  Frankly nuclear power can destroy the planet.

For some reason, these folks took the time to listen and see that much of what they believed in the past about nuclear power was simply wrong.  I am sure that most of you in the nuclear industry have been providing these facts consistently to all that would listen over the last 30 plus years.  So why are they listening now?  Why listen when you haven’t in the past?  The facts are the same.  But in this case the driver is different.  This group is overwhelming alarmed by the threat of climate change.  And as such (and different to many others), they decided to explore ALL the options; even the ones that would have seemed ludicrous to them in the not too distant past.  Or in other words, they chose to challenge their strongly held beliefs.

The film was not so much about advocating nuclear power (although it does) but rather of documenting the journey of these five individuals.  They visit plants. They visit Chernobyl and Fukushima and they explore the realities about the technology.  What I found the most compelling was the hand held dosimeter they carried as they traveled that showed radiation levels no higher at Chernobyl or Fukushima than most of the rest of the world.  This kind of evidence is hard to argue with.

But as interesting as this all is, this post is not about a group of environmentalists who have decided to put their faith in science as search for the truth.  Rather it is about why so many others don’t do the same.  It seems as science is always appreciated when it supports your side of an issue.  i.e. science is proving climate change which is pro-environment so science is right.  Science shows that nuclear power is good but that disagrees with environmental dogma so sweep it aside.  It’s good news when those who use science to make their climate case are realizing they should do the same when they evaluate nuclear power.  We should applaud anyone who takes the time to challenge a long held belief.

So, while Germany is aiming for a market-oriented energy policy that is free of ideology, why are they so dogmatic that nuclear needs to go and the quicker the better?   I recently was provided with a copy of a very interesting presentation made by Dr. Thomas Petersen at the  Jahrestagung Kerntechnik 2013 in Berlin this past spring that explores “Nuclear energy and the perception of risk in Germany”.  While presented at a conference the presentation has not been available on line to date.  I want to thank Dr. Petersen for giving me permission to post it so you can see what I think is a remarkable set of data.

Most of us outside of Germany probably believe that Germany is  a world leading innovator when it comes to technology.  Yet in this presentation it would appear that most Germans do not have faith (or trust) in experts when it comes to science.  They overestimate risk and consequences and are extremely averse to taking any risk they perceive can cause harm.  The slides note that a majority believe life is becoming more dangerous with time; are concerned that technological progress is risky and that research into certain technologies should be stopped; and that in politics, decisions are too often made on the basis of facts rather than how people feel.

When it comes to nuclear power, it is  high on the list of technologies that carry too much risk.  Consider the following slide:

PetersenPresentationSlide

Pulling all of these thoughts together is saying something along the lines of “I believe what I believe – I know that nuclear power is dangerous so please don’t try and deter me with facts or truth”.  The really scary part is that in today’s western democracies this is indeed how we make decisions.  And while we may want to laugh, or cry; it is always important to remember these decisions have very real consequences.  Less nuclear, more carbon.  Fact.  Less nuclear, more fossil fuels. Fact.  Less nuclear, more coal – and more illness and fatalities from pollution. Fact.

So what is happening in Germany?  The great transformation.  Yes, they are doing great things with renewables.  There is no doubt.  But at what cost in the short term?  The subsidies are destroying European energy markets, new coal plants are being built and carbon emissions are going up.  All to replace perfectly safe well run nuclear plants before they reach their end of life.  Nuclear plants have never hurt a single individual in Germany and likely never will.  So what exactly are these people being protected from?

The answer is clear as I close with this final quote from a pro-transition blog that disputes the negative impact on coal use of the policy by arguing it is a short term blip.  When talking about the reduction in nuclear generation over the last two years, the author concludes, “This reduction is a long-hoped for goal and the inspiration for the nation’s energy transition. Germans don’t want nuclear reactors. They haven’t since the 1970′s and they really don’t want them after Fukushima.

We can see that five environmentalists have taken on their beliefs due to a larger concern – climate change.  I wonder what issue it will take, if anything, for Germans to do the same?

Note:

In addition to the film, Pandora’s Promise, Mark Lynas has released a short book called Nuclear 2.0 available on Amazon in electronic format only.  I have read it and frankly it is extremely well done. It meticulously addresses the concerns with nuclear one by one by one with clear and effective information to make the reader see the facts.  I recommend it if you haven’t had a chance to read it.

 

Whatever happened to searching for the truth?

Finally this week, we are feeling the heat of summer.  I am off next week to teach for the WNU in Korea and China.  I always enjoy these summer courses and find the interest of those attending to be inspiring.

That being said I thought I would be a bit more philosophical this month.  For the past two months I have been also posting my blog on www.theenergycollective.com.  Thanks to that site for allowing me to share my thoughts with a broader audience.  My last post seemed to stir up a litany of comments (well over 100) with some very extreme points of view (to be fair both negative and positive).  I was called a “patently gross liar” as well as “not the brightest person to talk to on the subject”.    Nuclear power is a topic that invokes quite a bit of passion.

The nature of the comments supports many of the things I have been talking about for the last year or so; confirmation bias being one of the most critical concepts.  As I see it, in that post I pointed out three relevant studies that were carried out with good scientific rigour, all subject to peer review and authored by three very different groups of experts.

The first was by a Canadian regulator who is responsible for ensuring public safety which is why they did a study to determine if people living near nuclear plants are getting sick.  Their strongly supported conclusion was that this is not the case.  You would think this is would be good news.  Even If I was against nuclear power I would still be pleased to find out that children who live near these plants are not getting sick.

The second was by an American environmentalist who has demonstrated that operating nuclear plants instead of fossil plants over the past 40 years or so has benefited society by reducing real deaths due to pollution.  Again, good news as this study claims about 1.8 million lives saved.

And finally the third a study by a small army of United Nations experts from around the globe who have determined that radiation has not and is not likely to kill anyone as a result of the Fukushima accident in Japan.  Once again, good news that even after a horrible accident, human life has been protected.

So why are these things so hard for so many to accept?  As I have just read in Daniel Kahneman’s “Thinking Fast and Slow” – “when people believe a conclusion is true, they are also very likely to believe arguments that appear to support it, even when these arguments are unsound” – once again confirming what I have said many times before, beliefs come first and anything that disputes our beliefs is immediately suspect.

It is easy to become cynical in a world where there is little desire to believe in science and the search for truth.  It has become a case of my scientists versus your scientists.   Everyone can find someone to support his or her point of view. The press feeds this model as the more alarming side of the story gets the most coverage. They then try to demonstrate fairness by soliciting input from both sides of the issue.  However, when showing both sides of a debate it is often not in the context of where the science is; they just pull out “experts” on the other side giving the illusion of broad based disagreement even though there may be significant scientific consensus.

For example, as was stated by President Obama this week in his speech on climate change; “The overwhelming judgment of science — of chemistry and physics and millions of measurements — has put all that to rest. Ninety-seven percent of scientists, including, by the way, some who originally disputed the data, have now put that to rest. They’ve acknowledged the planet is warming and human activity is contributing to it.” He continues “but I don’t have much patience for anyone who denies that this challenge is real. We don’t have time for a meeting of the Flat Earth Society.”   It is nice to see a leader that says we have scientific consensus so we need to act.

Does that mean that the consensus is right?  Of course not.  Science is far from perfect but in a rationale society we must be guided by the science of the day – for that is what science is all about.  It is indeed healthy to continue to question and study and one day we may all be proven wrong.  But until then we should be guided by the consensus of scientifically produced studies and act accordingly.  That is the right thing to do. Instead, in many cases today we have unending debate resulting in the inability to act.  And of course this is the strategy of many who oppose various things.  These anti whatever folks know the process and in essence are the winners because they know how to keep the debate going and ensure inaction.

Here is another negative comment from my last post.  “My jaw drops when I hear some of the comments made by pro-nuclear folks.  I try to stay away from using terms such as idiotic, half-witted, ignorant or that might inflame the discussion.  Sometimes, however, the comments are so asinine, so moronic, it’s hard to resist.”  I am sure this individual is certain he is right and we are wrong and there is no amount of discussion or evidence that will change his mind.

This takes me back to a quote I used in my blog last summer from Dan Gardner’s book “Future Babble” which is actually a quote from Leon Festinger.  “Suppose an individual believes something with his whole heart.  Suppose further that he has a commitment to this belief that he has taken irrevocable actions because of it; finally, suppose that he is presented with evidence, unequivocal and undeniable evidence, that his belief is wrong; what will happen?  The individual will frequently emerge, not only unshaken, but even more convinced of the truth of his beliefs than ever before.”

This is what makes the movie Pandora’s Promise so interesting.  It is about recognized environmentalists who have studied the issue and changed their mind.  I still haven’t seen it as it is not yet showing in Canada but the reviews are very interesting.  Everything from well done to one sided propaganda.  Will it change any minds at all?  I do hope so but the evidence is that it is really quite difficult.

So I leave you with one last negative comment from my last blog.

You are a pro-nuclear guy trying to make believe that nuclear is as safe as mother’s milk and that it is the environmentally sensitive way to generate power.  Let’s see, we aren’t even two years this side of the Fukushima disaster that is still ongoing but, hey, I’m on the fool’s side of history.  There is no safe disposal for nuclear waste.  The gazillions of dollars it would take to build your little fantasy of a nuclear power plant on every block are non-existent and no one will invest unless the government is there to protect their underwear from cost overruns, economic collapse, default, and, oh yeah, any kind of nuclear disaster.  The real problem is that pro-nuclear folks are more concerned about their jobs than what is good for humanity.  Keep living in your little bubble world. “

I would argue as to which one of us in is the bubble world, but as an industry our task is definitely a difficult one.  However given the facts we must persevere.