image_pdfimage_print

The nuclear renaissance gathers steam…….the importance of Southern Company receiving its COL for Plant Vogtle.

If 2011 was all about the events at Fukushima, 2012 is shaping up to be a big year in moving forward with the nuclear renaissance.

For the Chinese, this is the year of the dragon.   This is, in fact, the major symbol of good fortune in Chinese Astrology.  Of the 12 signs of the Chinese zodiac dragon is the most special, as it is a mystical being rather than an earthly animal.  In this context that means we can expect grand things this year. Bigger than life is very much a dragon thing.

And bigger than life is what was achieved last week – the granting of the COL for Plant Vogtle in Georgia – the first COL ever granted under the NRC process and the first license issued for a new nuclear plant in the USA in over 30 years.

We have been writing for some time now on how the nuclear industry is moving from west to east with China and India having more than 50% of the new plants under construction and planned while they only have 3% of the current nuclear capacity.  This shift is important but so is the restarting of nuclear new build in the established nuclear countries of the west.  Of the over 400 plants in operation globally about half of them are in Europe and one quarter are in the United States alone.  With 104 plants in operation, the US by far has the world’s largest nuclear operating fleet.

Recent global decisions are starting to show a broad based nuclear renaissance with new build finally taking hold in the west.  In the UK, regulators have granted interim design acceptance of both Areva/EDF’s UK EPR and Westinghouse’s AP 1000; and planning application from EDF Energy for Hinkley C was accepted late in 2011.  More recently Finland accepted bids for its next nuclear plant following the first of a kind EPR under construction at Olkiluoto; and the French have embraced life extension for the current fleet and the French regulator has has given its preliminary approval of the safety options for the Atmea1 reactor design.  So even without the good news in the US last week, nuclear power is alive and well in the western world.

So why is the granting of the COL for Plant Vogtle so important to the future of the industry?  First of all, it clearly demonstrates that the US, the world’s largest nuclear operator remains committed to nuclear power going forward and what can be more important for the industry than that?  With the COL for SCANA’s Summer plant expected to follow shortly, there will be five nuclear units under construction in the US including TVA’s Watt’s Bar 2 which is nearing completion.  TVA also plans to complete its idled Belefonte plant.

It is somewhat unfortunate that in its decision to grant the COL, the chairman of the NRC was the sole abstaining vote – still overly focused on the impact of Fukushima, wanting conditions related to post Fukushima improvements added to the license.  To their credit, the remaining commissioners felt differently with Kristine Svinicki stating “There is no amnesia individually or collectively regarding the events of 11 March 2011 and the ensuing accident at Fukushima.” She added that NRC staff did not recommend and did not support Jazcko’s idea of a condition being attached to the licence, “because we found it would not improve our systematic regulatory approach to Fukushima, nor would it make any difference to the safety of operating or planned reactors.

It is interesting that just a few days earlier, a NRC sponsored long running study concluded “A severe accident at a US nuclear power plant would not be likely to cause any immediate deaths, while the risks of fatal cancers caused by such an accident would be millions of times lower than the general risks of dying of cancer”.  This study is very important going forward because as we have written before, while Fukushima has been a terrible accident, the actual consequence to human life of radiation releases has been very modest with no immediate deaths and no longer term deaths expected.

Now the other issue, again as we have written about in the past, is the price of gas.  Recent prices have been below $2.50 mmBTU – which is making it even more difficult for any alternative form of generation to gas to be economic.  So what does this mean for future commitments to nuclear power in North America?  Well, while gas prices are low right now, the gas industry is not without its own issues.  Recent studies are suggesting that at today’s prices, gas companies are losing money and that the cost of subsequent shale fields will continue to rise.  And of interest is new study reported in Nature magazine suggesting that with fracking, the carbon footprint of gas is becoming similar to coal, rather than half that of coal as it is for conventionally produced gas.  Now I don’t want to start a big conversation on the future of gas – the issue is that nothing is perfect and we can expect gas to have its issues as well.

So what’s the next step?  The industry needs to remain focused.  The cost of gas is not within our control.  However, delivering on our promises is!  After delays in Olkiluoto 3 and Flamanville, it is essential for the new US projects to be successful – meaning achieving costs and schedules.  As stated by Southern CEO Tom Flannery “We are committed to bringing these units online to deliver clean, safe and reliable energy to our customers. The project is on track, and our targets related to cost and schedule are achievable.”  Good luck Tom.  These units will be the 5th and 6th AP1000s to be built and we know that the first units in China are on schedule.   The industry is behind you and we are counting on you to make this project a success demonstrating that plants built in the west can indeed meet targets and be important parts of our future generation mix.

What a difference a year makes! With New Build taking hold in the west in 2012 now is the time to sell the benefits of nuclear power to overcome the Fukushima effect.

The good news is that as 2011 comes to a close, Fukushima has achieved cold shutdown and the recovery is moving to the next stage.  The emphasis is now on decontamination and getting the dislocated people back into their homes as soon as possible.  Does this mean that nuclear will overcome the effects of Fukushima starting in 2012?

It was only a year ago that the International Energy Agency (“IEA”) issued its Nuclear Roadmap 2010.  This report clearly demonstrates the important role that nuclear power can play in meeting climate change targets.  With a 50% CO2 reduction targeted by 2050 in the so-called IEA Blue Map scenario, nuclear capacity triples and its share of electricity generation rises from 14% today to 24%, the largest of any generation technology.  Under a postulated High Nuclear scenario, the nuclear share would reach as much as 38%!

IEA Nuclear Roadmap 2010 share of nuclear

But that was then and this is now.  On March 11, as we all know, a devastating earthquake and tsunami struck Japan with horrific consequences – killing more than 20,000 and causing a nuclear accident at the Fukushima Daiichi Nuclear Plant.    There was significant fuel melting in three units resulting in radioactive releases to the environment.  Even though there have been no fatalities due to radiation and there is little risk of any future radiation health impacts, the global impact of this event to the nuclear industry was overwhelming.  While many countries re-confirmed their commitment to nuclear power after reviewing plant safety and implementing lessons learned, some countries in Europe led by Germany have taken the decision to scale back or even move away from nuclear power.

In the IEA’s World Energy Outlook 2011 released in early November they added a new scenario – Low Nuclear – to account for a possible post-Fukushima shift away from nuclear power in addition to the New Policies (reference) and Current Policies scenarios.  In the reference case, global nuclear power is expected to rise 70% by 2035 with China, Korea and India leading the growth.  This case is only slightly less than the projection last year.  In the new Low Nuclear Case, the total amount of nuclear capacity actually falls from 393 GW at the end of 2010 to 335 GW in 2035.   According to the IEA, this scenario has severe implications for energy security, diversity of the fuel mix, spending on energy imports and energy-related CO2 emissions.

In this low nuclear scenario, by 2035, coal demand increases to over twice the level of Australia’s current steam coal exports. The increase in gas demand is equal to two-thirds of Russia’s natural gas exports in 2010.  The increase in renewables-based generation is equal to almost five-times the current generation from renewables in Germany.  Energy-related CO2 emissions also rise with increased use of fossil fuels in the power sector.  This clearly has significant implications for global energy supply making it extraordinarily difficult to meet carbon targets.  As stated in the IEA’s WEO report “Following this trajectory would depend on heroic achievements in the deployment of emerging low-carbon technologies, which have yet to be proven. Countries that rely heavily on nuclear power would find it particularly challenging and significantly more costly to meet their targeted levels of emissions.”

WEO New Policies (Reference) and Low Nuclear Scenarios nuclear capacities

And now, Europe has issued its Energy Roadmap 2050 with the overall emphasis on renewables and energy efficiency; a policy document that has been clearly impacted by the post Fukushima shift in thinking in Europe.   As illustrated in the chart below, even with five different scenarios, the one thing they all have in common is a large increase in renewable energy generation.  No other form of generation increases anywhere near to that of renewables; and in fact most other forms decline over the plan period with only the size of the decline depending upon the specific scenario.  But even with this emphasis on renewables, the report does make important positive points on the role of nuclear power noting that nuclear energy is an important contributor to meeting the roadmap objectives.

In fact the report notes that today nuclear energy is the decarbonisation option providing most of the low-carbon electricity consumed in the EU.   It then goes on to note the post Fukushima reality.  “Some Member States consider the risks related to nuclear energy as unacceptable. Since the accident in Fukushima, public policy on nuclear energy has changed in some Member States while others continue to see nuclear energy as a secure, reliable and affordable source of low-carbon electricity generation.”

When it comes to cost, the impact is clear.  Consistent with the IEA Nuclear Roadmap, this report states “the scenario analysis shows that nuclear energy contributes to lower system costs and electricity prices. As a large scale low-carbon option, nuclear energy will remain in the EU power generation mix.”

This is critical since the average capital costs of the energy system will increase significantly due to investments in power plants and grids, industrial energy equipment, heating and cooling systems, smart meters, insulation material, more efficient and low carbon vehicles, devices for exploiting local renewable energy sources (solar heat and photovoltaic), durable energy consuming goods etc.  And the reality is that renewables are expensive with the highest electricity costs in the “near 100% RES power” scenario which the RES power generation capacity in 2050 would be more than twice as high as today’s total power generation capacity from all sources (I am assuming primarily due to the low capacity factors of renewable generation).  Other scenarios such as the High Energy Efficiency scenario and the Diversified Supply Technology scenario have the lowest electricity prices due to somewhat lower renewable penetration (60 to 65%) taking advantage of the lower costs of efficiency, gas and nuclear.   The report notes that many renewable technologies need further development to bring down costs.

So as we enter 2012, where does this leave us?  One lesson from Fukushima is that many in the world are still very afraid of nuclear power because of the huge fear of radiation.  There was an interesting piece on this in a CNN Health article this past week which argues that public trust in nuclear energy should be built on the existing acceptance of medical radiation dose levels.  The public welcome moderate medical radiation levels from both internal and external sources, for medical imaging (CT, PET, SPECT scans) yet fear the much smaller levels from nuclear plants. And as I stated in my last blog entry, as an industry our work is cut out for us in changing this thinking.  Reducing the public fear of radiation is no small task and will take time and a carefully coordinated approach from us all.  Professor Wade Allison argues that the ALARA principle has hurt us and increases this fear of radiation and suggests that this policy should be replaced with “As High As Relatively Safe (AHARS)”, mindful of other dangers, local and global.  An interesting approach indeed.

One thing is clear from the above IEA studies and the European Roadmap 2050.  Reading between the lines nuclear power is essential to meeting long term carbon reduction goals.  Relying too much on renewables is far too risky an approach and is more of a wishful thinking scenario than a realistic one.  To achieve global carbon reduction objectives, it makes no sense to not take advantage of the one true large scale low carbon technology – nuclear power.  It is here today – it is safe and in most jurisdictions it is economic.

So what about 2012?  So far it looks like it can be a good year for nuclear power.  Important progress in new build is being made in the UK; the US will see its first COLs enabling the first new builds to start construction in a generation; Canada may make a decision on its new build; and, of course China and others in Asia will continue to expand their programs.

Work in Japan will continue and will not be easy as the government works to decontaminate the area around Fukushima and hopefully many will get to return to their homes.  Of importance we can expect to see many of the idled plants in Japan get approvals to restart easing the electricity shortage caused by these units not running.  Again a recent Japanese study shows that nuclear remains the low cost option to 2030.

But of most importance, this is not time for industry complacency.  This has to be the year where the industry marshals its forces to get the message out – in a thoughtful, clear, unambiguous way.   The future is up to us so let’s get on with it and tell our story.  Even though truth may be on our side, the path is going to be long and the work hard……..but in the end it is worth it for us all………

We offer a proven large scale clean, economic and, of utmost importance, safe option for electricity generation.  As the only proven large scale low carbon option that can meet the world’s energy needs, nuclear power must continue to be an important part of the electricity generation mix now and into the future.

 

Lower demand and more renewables – is Surplus Base Load Generation here to stay?

Late in November I blogged about a recent phenomenon being experienced in some systems – Surplus Baseload Generation (SBG).  This is being experienced in Ontario, Canada due to falling electricity demand and the increased use of variable renewable energy sources such as wind and solar.

At that time, I started a poll asking about the future of baseload power.  Since then, the IESO in Ontario has published its latest Reliability Outlook.  The numbers are striking.  Demand was down 6.4% in 2009.  The following graph shows that demand is not expected to reach pre-economic crisis peaks even by 2018.

Ontario Demand Forecast

As of result the province continues to experience Surplus Baseload Generation (SBG).  Forecasts of SBG are now made daily.  With the growth of renewable generation SBG is expected to continue into the future.  This will certainly impact any decision for building new nuclear, as nuclear plants are most suited to providing long term stable baseload power and energy. 

The commitment to renewable energy continues to grow.  Wind generation in Ontario rose by more than 60 per cent in 2009 over the previous year, to 2.3 TWh.  Ontario has implemented the Green Energy Act, arguably making it one of the “greenest” jurisdictions in North America.  Just this past week, government announced a $7 Billion deal for 2,500 MW of new renewable generation from a Korean consortium led by Samsung C&T.  The deal includes the implementation of new manufacturing in the province for both wind and solar components.

While the above chart does not show baseload, with 1,000 MW of wind on the system and 11,500 MW of nuclear, this spring, Ontario started to experience SBG on a weekly basis.  This resulted in nuclear unit reductions on 54 days, nuclear shutdowns on five days and water spillage at hydro facilities on 33 days.  In the Reliability Outlook the projection is for 1600 MW of wind by 2013.  With the Samsung deal and other FIT program renewables, we could be approaching 4,000 MW of wind and solar in the coming years while the overall demand is not expected to increase dramatically.  Therefore, the baseload requirements will be further squeezed from the bottom as renewable generation has priority to the system when available.  In other words, both renewables and nuclear are “non flexible” load i.e. not readily dispatchable.  Clearly SBG will be an ongoing issue. 

And now, for the results of my earlier poll.  Although the number of votes was somewhat modest, the trend was clear. 

While the comments suggested that baseload is important, only 10% of respondents thought that renewables will have a small impact on the use of baseload.   The most votes were for “Medium Impact” as it seems to be recognized that renewables are here to stay and that the nature of electric grids are going to be changed forever.

Happy New Year 2010!!

As usual at this time of year I find myself asking “Where did the time go?”  Seems like just yesterday the year was beginning.  And in this case, it was a very busy year.  I am thankful to have been busy as we have been going through the worst economic times in recent history.

There have been a number of events that have defined the year in the nuclear sector.  And it was a decision at the very end of the year that clearly demonstrated the nuclear industry strength moving from west to east.  The announcement that the Koreans have won the bid for four new nuclear units in the UAE was HUGE.  With an estimated value of $40 billion ($20 billion for construction of 4 units and $20 billion for their operation), this is an absolute “game changer” in the nuclear industry.  The Koreans have now achieved their desire to become a global nuclear player exporting their domestic designed APR 1400. Of more importance it shows that commercial issues have won out over political strength in this case. The Korean bid was reported to be significantly less costly than the alternatives from Areva and GEH. So far I have not seen any mention of the commercial conditions, so I cannot comment on if or how much the actual commercial conditions (i.e. how much risk the Koreans were willing to take) impacted the decision.

Never under estimate the capability of Korea!! The nature of international nuclear competition has changed!  Of course, they still have to deliver.  Given my own long experience in Korea, I would expect them to succeed.

This caps a year where nuclear growth in the east was substantial.  Sticking with Korea for a moment, in addition to winning their first nuclear export, their new electricity plan calls for a large increase in nuclear capacity within the country to 2030.  Korea also made a big investment in uranium as KEPCO purchased 17% of Denison Mines this year.

In China, nuclear growth exploded!  With 11 units in operation, China now has 18 under construction.  They have increased their target for 2020 from 20 GW to 60 GW or more and growing even faster after that.  With construction under way for AP1000 units and EPR units as well as the existing CPR1000 units, their program is as broad as it is large.  As domestication of the industry continues, the first CAP1400 – a Chinese derivation of the AP1000 was announced this year to be launched in 2013.  China also continued its entry into international uranium development.  CNNC bought Western Prospector with a property in Mongolia this past year and CGNPC bought a 70% interest in Energy Metals in Australia.

And of course, there is India.  In 2009 India truly joined the international nuclear community.  With just under 4,000 MW in operation, India is now on track to meet its target of 20,000 MW in service by 2020 and more than 60,000 MW by 2030.  With new agreements from Russia for VVER units, agreements to build the EPR from France and new agreements anticipated to build US designed units, the PWR program is expanding quickly to supplement their home grown PHWR program.

Of more importance, India now has access to international supplies of uranium to meets its domestic fuel needs.  So far there have been arrangements made with Russia, France and Kazakhstan to import uranium and agreements are in place to enable uranium importation from Mongolia and Namibia.  Towards the end of the year, India also concluded a Nuclear Cooperation Agreement with Canada opening the door for uranium imports. Cameco has opened an office in India and has big plans for this country.

With all this activity in Asia, how about the west?  Well, while there was progress with projects in the USA and the UK program is continuing to develop, there have been no new firm commitments this year.  Hopefully 2010 will see the continued growth with a new build project formally starting in the US.  In the UK government suspport for new build nuclear has continued to grow while EDF concluded its purchase of British Energy.  In the US, there was progress in a number of states.  The DOE has announced that it will provide its first loan guarantee when a utility receives a COL from the NRC.  Activity is increasing in both markets.

In Canada, the year started with a bang.  Ontario looked to be leading North America with its international bidding process for new units.  This fizzled later in the year when the project was suspended.  The other three provinces with nuclear ambitions also had major decision points.  In New Brunswick, the government is proposing to sell its utility NB Power to Hydro Quebec, Saskatchewan has decided against nuclear power in the short term and Alberta has stated that it is open to keeping nuclear as an option for implementation by the private sector.

Definitely a busy year for the nuclear industry.  Of course, 2009 was also an important year for the climate change issue.  I think that this posting is already long enough so I will comment on Copenhagen and the move to reduce green house gases in a subsequent posting.  There were also many developments with renewables that deserve attention.  More to come.

One thing is for sure, energy continues to be high on the agenda.  With the economy starting to recover, energy issues are expected to continue to be of importance going into 2010.

Is there a future for base load generation? Please respond to the poll?

System operators have recently seen something rather new  – SBG – or “Surplus Baseload Generation”.  This is due to falling demand related to the current economic situation and a newer phenomenon; the displacement of base load by variable load renewable generation.

With governments everywhere and the public strongly supporting new renewable generation, primarily wind and solar; these forms of variable generation are displacing base load by being must run when the resource is available.   So the question is “Is there a future for base load generation?”.  Please respond to the poll at the bottom of this blog entry

This issue was addressed at last week’s Association of Power Producers of Ontario (APPrO) annual conference where a session was dedicated to this new phenomenon.  The following shows the amount of time Ontario experienced SBG over the past 18 months.  Excess generation of well over 1,000 MW was experienced!  This resulted in shutting down low marginal cost nuclear plant as well as spilling water at hydro plants.  The 18-month forecast by the IESO in Ontario expects SBG to continue to be an issue going forward.

Surplus Base load Generation

IESO Presentation to APPrO 2009

IESO Presentation to APPrO 2009

The variability of the wind is shown in the following chart illustrating how two days in a row the wind at the same time varied from 989 MW to 7 MW on the following day.

Wind Capacity on Consecutive Days

IESO Presentation to APPrO 2009

IESO Presentation to APPrO 2009

So what does this all mean?  In the smart systems of the future is the concept of large scale base load generation doomed?  Do you have to be able to manoeuvre to survive?  Or will policies change to ensure that low cost base load generation is not displaced for higher cost alternatives?

This is just the beginning of the discussion for this subject.  Please answer the following simple poll.  I would like to get your views.  More work is needed on this issue as we plan the systems of the future.

The precarious world of uranium supply and demand

Last month, the supply of uranium was severely interrupted when BHP declared force majeure on its deliveries of uranium as the main haulage system failed at Olympic Dam.  Production has been reduced to about 20% of nominal and it is expected to take a number of months to repair and bring production back to its full output.  Olympic Dam is a major producer of uranium, producing about 4,000 tonnes U per annum or just under 10% of global primary production.  Therefore, losing the equivalent of 3,000 tonnes per year for six months or so (say 1,500 tonnes) represents a significant event in overall production that affects the delicate balance between uranium supply and demand.

Many people do not appreciate that the supply / demand situation for uranium is somewhat unique amongst commodities.  I first gave a paper on this topic in 2007 to the Raymond James Uranium conference in New York (when the price of uranium was at its peak).

So what makes uranium so special in the world of commodities?  A few things come to mind immediately.  First, uranium is a single use commodity. Its demand is completely dependent upon how many nuclear power plants are in operation and how much fuel they need.  In recent years, the global nuclear fleet has been consistently improving its operations but now has pretty much achieved it maximum.  This means that demand cannot go up for the current fleet of nuclear power plants – there can only be negative shocks if a plant performs poorly. For example, following an earthquake in Japan, some plants were shut down for an extended period. This means that they are not using fuel so demand decreases.

As for the future of demand, the forecasts are for a dramatic growth in new nuclear plants. The WNA is projecting growth of more than 50% in the number of GW in production over the next 20 years.  This means a significant increase in demand that must be accommodated in future supply plans.  However, it takes from 10 to 15 years to implement a new nuclear project from conception so there are really no surprises in demand in the short to medium term.  We all know what plants are under construction so the projection for new demand is quite stable for the next 5 to 10 years with some uncertainty starting to appear at the 10 year mark.

So what does this mean?  It means that demand increases in a predictable fashion and that the potential is always there for negative demand shocks if existing units perform poorly or are taken out of operation for any reason.

Now for supply.  Similar to nuclear power plants, bringing new uranium mines into production takes quite some time and effort.  Many projects are delayed as companies have been having difficulty in bring on new mines.  Therefore, supply potential is also quite predictable for at least 5 years going forward.  Again, as with nuclear power, the risk is that shocks affect the system negatively as there have been a number of events over the past few years that have halted production or delayed new mines.

And finally, as a fuel, uranium is also unique in that it is bought in batches.  The volume of fuel required to operate a nuclear power plant is quite small so utilities can carry a significant inventory to reduce their risk.  This means that buying and selling is not completely in step with usage.  This is different from say, coal or gas that must be consistently delivered to keep fossil generating plants operating.

In the end, uranium prices have remained rather low over the past 20 years with a short term blip in 2007.  These prices remain low because in most scenarios, supply and demand are in balance making it difficult for price increases that are needed to encourage new supply.  However, for utilities the risk remains.   Therefore, the trend is now for utilities in the east (Japan, China, Korea and India) who are fast becoming the world’s biggest users of fuel to invest in the resource itself to help them mitigate the risk.  These countries also have little domestic supply so need to rely on supply from other countries.

Events like the one at Olympic Dam demonstrate how precarious supply can be. So we should expect countries with growing demand and little domestic supply to continue to step up their efforts to invest in global resources to reduce their overall supply risk.

Falling electricity demand and the impact on nuclear projects – An interesting article

 Today, Bruce Power announced that reduced operations to cope with reduced demand is the new short term reality.  See the following quote from the article linked here:

“Bruce Power officials say running at reduced capacity is the new reality for the nuclear plant for the foreseeable future, despite getting the green light to return a reactor to service after a 22-day shutdown due to a provincewide slump in energy use.

“This will have an impact on us, on our machines, our people — this is an ongoing situation that we’re going to have to work through,” Steve Cannon, a Bruce Power spokesman, said yesterday.

“At the end of the year we are going to take stock of this year and determine exactly how big the impact has been on our business plan . . . when we compare it to what we expected the market to look like, what we expected our generation output to be and what we expected our revenues to be.””

Hard to imagine but true.  In the short term, demand in Ontario has fallen to the extent that baseload generation has been affected.  It will be interesting to see how long it takes to recover and the extent of the recovery in demand.  How much of the reduction is due to the economy and how much due to successful conservation?  And if the economy, is there permanent structural change?

Thought this was worth adding after last week’s entry.  Would really like to hear from others about what is going on in their jurisdictions.

Falling electricity demand and the impact on nuclear projects

During the summer I have been a slacker when it comes to contributing to my blog.  It is a time for relaxation; a good time for reading and reflection.   

As we all start the big climb out of the current economic crisis, it may be time to start thinking about what lies ahead and the legacy that this crisis will have left us.  There has been an assessment by the IEA in May about the impact of the financial crisis on energy in general and a more detailed assessment of nuclear power in the USA by Moody’s in June.  So why am I thinking of talking about this now in August?

Well, this week OPG (Ontario Power Generation) announced their second quarter results here in Ontario Canada (home for me).  They reported a 19% drop in electricity production for the second quarter.  In part this is due to lower overall demand and also is related to production by others in the market.   Now there are a number of reasons for this lower demand.  First and foremost, this has been a mild summer so the air conditioning loads are down.  Second the economy has had a big effect on industrial loads and finally, the success of the OPA conservation programs is starting to show benefits in the market.

This summer has seen some unusual things happen in the Ontario market.  Nuclear plants have had to be shut down due to the lack of load.  This is a result of low off peak demand and an increasing amount of renewables on the system that displace base load when the resource is available according to electricity market rules.  Also this summer, the government of Ontario suspended its bidding process for a new build nuclear plant.  The reasons given were the high cost of the bid and the uncertainty over the future of AECL, the lead bidder.   AECL’s shareholder; the Government of Canada, is looking to partially privatize the national nuclear vendor.  I would guess that the lower demand probably also had an impact.  Hard to think about spending large amounts of capital when demand is shrinking. 

In any case, reading about OPG made me think so I have had a look at the numbers.  Demand has decreased in Ontario since 2005.  Current projections by the IESO are for a 4% drop in demand this year and a further 0.35 drop next year.  Wow!  A far cry from even the modest 1% or so growth assumed in the current Integrated Power System Plan.  This is consistent with the IEA forecasts.  They are expecting a drop of 3.5% in 2009; the first drop in global electricity demand since the second world war!

The Moody’s report is more focused and suggests that US utilities that are considering new nuclear plants are not doing what is necessary to strengthen their balance sheets to get ready for these large projects.   Moody’s claims that the size of these projects makes them “bet the farm” projects – a term I often use when teaching project structuring for the World Nuclear University.  However, they also note on the positive side that there is a demand for new low carbon generation and that nuclear as an economic alternative can play a role.

So what does this mean for the future of nuclear in North America?  The IEA is somewhat negative and states that the crisis may hold back some programs.  It mentions South Africa as an example of one country that has delayed its new build projects for financial reasons.  On the other hand, it also states that nuclear is probably the only large scale viable low carbon generation option and that its economics improve as carbon is priced.  They also note that most programs that are in the advanced planning stages are continuing and once operating nuclear plants are viewed favourably by the financial community.

To answer the question – the current economic climate may delay some new nuclear projects, however it is expected that most will continue and that they will be able to raise the necessary financing as the economy starts to improve.   Most likely, investor-owned utilities in North America will look to strategic partnerships to share costs and risks.  The lower demand may also buy the industry some time to ensure that it plans and executes new projects with the necessary diligence and oversight to ensure project success.  Given the relatively high capital costs and long project schedules of a nuclear plant, projects currently in the preparation phase will be in service towards the end of the decade.  And of course, continued focus on implementing new projects on budget and on schedule will be key to a successful future.

The New Politics of Uranium Supply

After two weeks of modest increases, this week the uranium price jumped by $3.00 to $53.00. These few weeks of increase follow a downward trend and are in part due to recent political events that can impact future supply.

The biggest impact is due to events in Kazakhstan. It is now a few weeks since Kazakhstan announced that it is investigating past sales of the country’s uranium assets to foreign companies. The former Soviet republic, which is home to a fifth of global uranium reserves, has accused a former head of state-owned uranium producer Kazatomprom, Mukhtar Dzhakishev, of illegally selling deposits to foreign companies. Dzhakishev and other executives have been removed from the company and been replaced by new government appointees.

In Africa, the President of Niger dissolved parliament in an attempt to secure a change to allow him to run for another term in office. As Kazakhstan is poised to become the world’s largest supplier of uranium in 2009, and that together Kazakhstan and Niger produced about a quarter of the world’s uranium in 2008, this is very troubling news for the industry.

Uranium Production by Country

 

2007 TU

2008 TU

Australia

8,611

8,430

Canada

9,476

8,980

Kazakhstan

6,637

8,521

Namibia

2,879

4,366

Niger

3,153

3,032

Other

10,523

10,601

Total

41,279

 43,930

Source: WNA

While there were modest increases in price over the last two weeks since these events started to unfold, it is interesting that this week’s increase was the largest in some time.  This is after Kazatomprom assured their customers late last week that production will be unchanged and that it would honour all existing agreements; and following the Uranium One announcement that the Russian ARMZ will take a 17% stake in the company for half a uranium mine in Kazakhstan. 

And there are also issues for potential future production.  The acquisition of Western Prospector by CNNC in Mongolia is at risk as the government of Mongolia has temporarily suspended Western Prospector’s mining licenses.  This is of interest as it represents a recent investment in potential future production by China.

So what does this all mean for the nuclear industry?  Clearly, one of the strengths of the industry is the fact that uranium is available from very politically stable countries, primarily Canada and Australia.  With production now increasing in Kazakhstan and Africa where there are deeper political issues, is there now an increased risk to future supply?  Well, so far if we use the uranium price as a proxy for international concern, it appears that there is some concern.  But with the need for uranium supply and demand to be in good balance for the industry to move forward and build the many new nuclear plants under consideration, as a minimum, we would suggest that the bigger nuclear markets carefully review their supply strategies and ensure that they are sufficiently diversified to minimize their risk.  Each uranium producing country has different political issues – and none are immune.  Therefore diversification is an essential part of long term strategic uranium supply strategy.

MIT Report Update “The Future of Nuclear Power”

This week MIT released an update to its 2003 report, “The Future of Nuclear Power”.  Back in 2003 this report brought the economics of nuclear power in the United States to the forefront.  It supported new nuclear as a low carbon option for electricity generation and considered a scenario that would see the increase in capacity by a factor of 3 (meaning building about 200 new units) by the middle of this century.  It is commonly accepted that this report was an important input into the policy that followed with respect to nuclear power including the nuclear power 2010 program and the Energy Policy Act of 2005.

This update looks at progress over the past 6 years and of most interest, updates the economics.  The following table from the report shows the new versus old analysis.

Click on table to enlarge

Click on table to enlarge

As can be seen, the costs have increased significantly over this time period with the projected costs of nuclear increasing faster than the costs of the coal and gas alternatives.  However, the authors draw the same conclusions as they did in 2003; that nuclear is competitive with the alternatives. The report continues to assume a higher project risk for nuclear than fossil.  This translates into a higher cost of capital and the highest cost of electricity.  Assuming the same cost of capital as the alternatives results in nuclear being extremely competitive.

I want to comment on the costs and assumptions.  I have to admit, that back in 2003, when I worked for a nuclear vendor, I was not happy with this report assuming nuclear at $2,000 /kW.  At that time we all believed that we were making strides to lower the cost of new plants and we wanted to see that reflected in the analysis.  Well, I was wrong.  Today the cost of nuclear power has increased and I do accept that $4,000 /kW is a reasonable assumption to make in today’s world.  Does that mean that I think that it is OK for nuclear plants to cost $4,000 /kW?  I definitely think that more work needs to be done to bring these costs down but that is the subject for another discussion.

On the other hand, things have evolved so that the other assumptions do need to be challenged.   While it may have made sense to assume different costs of capital in 2003, this is no longer the case.  The argument in the report is based on the industry’s poor track record of building on time and on budget.  It states that issues with new plants since that date confirm this and that the risk premium can only be eliminated with proven plant delivery performance.  While I do agree that the industry needs to prove it can deliver a new fleet of plants to budget and schedule, things have changed since 2003.

In the current environment, the majority of new plants under consideration in the United States are with regulated utilities.  These plants will be financed on balance sheet so they will be financed at the cost of capital of the utility itself, no different than if it were to build a coal or a gas plant.  And now that the cost estimates have escalated significantly, it is reasonable to assume that part of this increase is due to utilities being more conservative and taking the risks into account in the cost estimates themselves.

Also, the risks of the alternatives have changed significantly.  The risk of new climate change initiatives being put into place after the coal or gas plant is committed has increased.  This means additional costs to the utilities to implement new carbon control requirements or charges due to additional costs for releasing carbon are likely.  Is $25/t sufficient?  At this stage nobody knows meaning higher risk.

And finally, it is interesting how the success of carbon capture and storage (CCS) is assumed, even though the technology has yet to be demonstrated while the success of building a new nuclear plant is consistently challenged.  The MIT study itself recognizes that CCS is not proven. The costs of CCS seem to go up every time a new estimate is made, yet they assume that nuclear has a higher risk profile and cost of capital than coal with a yet to be proven technology attached to it.

In the case of a merchant plant, should there be one; it will very likely only be implemented under the US government loan guarantee program.  This means that they can achieve the 80/20 debt/equity ratio assumed for the other technologies with even a lower potential cost due to the benefit of the government guarantee.

All that being said, the timing of this update is useful.  Their conclusion that more needs to be done is important.  As stated “The sober warning is that if more is not done, nuclear power will diminish as a practical and timely option for deployment at a scale that would constitute a material contribution to climate change risk mitigation.” It will be interesting to see how both government and industry respond.