image_pdfimage_print

Advocating for nuclear power – the time is right

We live in strange times.  Globally, populism is growing in response to a deep-seated anger with so-called liberal elites.  Experts are no longer respected over louder voices that support peoples’ strongly held views.  There are no facts, only beliefs.

While most of the world continues to support the Paris agreement on climate, there is a reluctance by some to include nuclear power in the tool-kit to help meet this global challenge.  There is wide spread belief that Germany is going down the right path as it eliminates nuclear from its mix and drastically increases its use of renewables.  The only problem is that fossil fuel use is also increasing and emissions are not going down.  This has not stopped other countries like France, which has one of the lowest emissions in Europe due to their nuclear fleet, setting out a policy to reduce reliance on nuclear.  And now Korea seems to be going down the same path even though it would probably be hard to find another country that has benefited more through successfully implementing its nuclear program.

Does this mean that nuclear power is getting ready to move over and cede the future of energy supply to a fully renewable world?  Not even close.  With 58 units under construction there are now more new nuclear units coming into service each year than in the last 20 years.  The UAE is nearing completion of its first units, a four-unit station as it becomes the newest entry into the nuclear club.

On the other hand, in the USA units are struggling to stay in service in de-regulated states and one of two new build projects has been stopped in the face of Westinghouse bankruptcy.

In the midst of all of this apparent chaos, there is a bright light.  People are standing up saying – don’t close my nuclear plants.  People are recognizing that removing large low carbon emitting stations from the energy mix is no way to improve the climate.  And most of all these people are ready and willing to fight.  In the more than 35 years we have been in the nuclear industry I don’t remember a time when there were strong vocal pro-nuclear NGOs.  Yes, that’s right – there are those who are not directly in the nuclear industry who have taken up the fight for nuclear.  Not because they have any great passion for the technology, but because (as we discussed in May), they see nuclear plants as the ultimate solution to important issues.  They want to save the environment.  They want plentiful economic energy and they know that nuclear is an important part of the solution.

                  More vocal pro-nuclear NGOs today than we have had in 35 years

These organizations include a growing list of environmentalists such as Environmental Progress, Energy for Humanity, Bright New World and Mothers for Nuclear – to name a few (this list is not meant to be exhaustive so if your organization is advocating for nuclear power, please comment with your name and a link).  What they have in common is an understanding that nuclear power is not the evil that some think it is and that in fact it can help to make the world a better place.  And of more importance they are willing to advocate for it.

The way I look at it, there are two types of advocacy.  First there is the broader objective of securing public support; and then there is the more targeted advocacy that fights in the trenches to get political support for specific projects and actions.   It is this second approach that I want to focus on here.  These pro-nuclear groups consist of many who have spent their lives advocating for what they believe in; and therefore, bring a knowledge of how to influence decision makers and raise the profile of their cause.  I have talked before about Meredith Angwin’s wonderful book on how to be a nuclear advocate.  It’s a “how to” on getting out there and taking action.  Or take the case of the nuclear bus – old fashion grass roots activism.

As was once explained to me, it is always easier to be against something than to be a supporter.  It is anger about things that people believe is wrong in the world that ignites passion and brings them to the streets; supporters often stay at home and discuss these projects with their friends over a glass of wine.   That is in part why there is so much passion about stopping the closure of existing nuclear plants.  It is easier to be against closing them with the impacts to emissions and our communities than to argue in support of building something new.  This is the beginning.

Because after all, it is a numbers game.  200 anti-project protesters can get a lot of press even though there may be 2000 who support the project but who stayed home.  It’s about getting people out – politicians want to do the will of the people and they need to see this will.  Supporting continued operations of a plant or even a new build is much easier if the preponderance of the people speaking at public hearings are in favour of the project.

The word we use today is “social license”.  But what does this really mean?  If it means securing significant local support for something then it is a laudable goal.  However, most anti-nuclear (or anti-anything) groups take it to the extreme and mean that they have to agree with proceeding; which is something they will never do.  As stated so eloquently by Rex Murphy in his piece on the efforts of the new NDP government desire to develop oil in Alberta – “Notley [the Premier] missed the central point of social licence: its preconditions can never be met, and are not meant to be. It is an obstructionist tactic, designed to forestall and delay.”

So why are countries ignoring the potential benefits of nuclear power as they strive to feed their energy hungry citizens with low carbon economic energy?  There are many reasons as we and others have discussed before.  We certainly believe that the overriding issue is fear.  But we can also see that when people become supporters based on nuclear power being a solution to issues of importance to them, they do their homework and are able to resolve their fear.  So we need to ask ourselves are people really that afraid, or is this also a remnant of the past where environmentally conscious groups were synonymous with being anti-nuclear?  Are we seeing the last vestiges of a generation that fears nuclear power at all costs?  Do we now have the opportunity to start to change the minds of a new generation that is willing to stand up and advocate for nuclear power?   It may well be.

One thing is for sure, we all need to get out there and advocate for what we believe in.  The time for talk is over – it is time to act.  We need to organize and be sure to be out there every opportunity we can to support the decisions that we believe are necessary to achieve our goals.

So,

  • if you believe that climate change is a threat and that fossil fuel use is the main culprit; or
  • if you believe that access to economic reliable energy is essential for progress and is critical to lift people out of poverty; or
  • if you believe that high quality jobs and technological innovation is good for our communities and our economies; or
  • if you want a future for your children and grandchildren with abundant plentiful reliable economic and low carbon energy to support them as they create their own future;

Then the answer is clear – and that answer is nuclear power.

This is a call to action.  We all need to work together to advocate for what we know is right.  We have been involved in this industry for close to 40 years and still are passionate supporters –  because we truly believe we can leave the world a better place than when we started.

Energy policy cannot be based on fantasy – the truth may yet prevail

Over the last week or so, the internet has been abuzz with articles on the recent paper published in the Proceedings of the National Academy of Sciences, “Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar”, by 21 prominent scientists taking issue with Mark Jacobson’s earlier study claiming that 100% renewables is feasible in the USA by 2050.   Given the strong desire to believe in this utopian future; and how many prominent people have referenced this Jacobson paper to support their energy views, it is somewhat surprising how much press the opposing view elicited.  That being said, most of the articles had titles like, “A bitter scientific debate just erupted over the future of America’s power grid” or “Fisticuffs Over the Route to a Clean-Energy Future” making it seem like this is about scientific debate, when it is actually about a paper that has been proven to be false.

As stated by this paper’s authors, “In this paper, we evaluate that study [the Jacobson study] and find significant short- comings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.”  These are pretty strong statements for an academic paper.

Of course, for most of us in the industry this study is telling us what we already knew, that 100% reliance on intermittent low-density energy sources is not going to meet the needs of an energy hungry world.  We suggest you read a few of the articles and of most importance, the actual paper.  We would also recommend you read the article by James Conca “Debunking The Unscientific Fantasy Of 100% Renewables” which takes aim at the issue of bad science.

But the world is passionately in love with renewables.  What can be better or more natural than wind and solar?  It makes you feel good – there are no problems that can’t be overcome with these wondrous technologies.  They definitely don’t cost too much [but they need subsidies], or have environmental or waste issues [solar waste is increasing] and of course their intermittency is a modest problem to be resolved by smart people [by building more gas to back them up].  On the other hand, fossil fuels emit carbon and while nuclear plants are low carbon, they are dangerous – everybody knows that.  And in this era of fake news and alternate facts, why would anyone want to change this glorious view of the future?

Of course, the option that does tick all the boxes for a low carbon energy revolution is nuclear power.  And we are starting to see this position being more widely accepted.  As the dream of a renewables only future fades, the merits of nuclear are once again coming to the forefront.  That is why the US government is taking action to save its operating nuclear plants that are struggling in de-regulated markets, the UK is strongly supporting new build, Canada is refurbishing its aging nuclear fleet and China is rapidly expanding its share of nuclear production.

Countries like Germany that are committed to phasing out nuclear for a 100% renewable future are further proof that this approach to decarbonization is flawed as they add coal production to make up for their nuclear shortfall.  Now Korea seems to be following this approach as their new president is committed to getting rid of both coal and nuclear (70% of their current system) for a renewable future.  We only hope this analysis of Jacobson’s paper is a wake-up call that is heeded in these markets that now seem to be following an unrealistic romantic world view rather than a realistic one.

Once again, I have to quote Michael Shellenberger.  In his proposal for Atomic Humanism his first principle is – “nuclear is special. Only nuclear can lift all humans out of poverty while saving the natural environment. Nothing else — not coal, not solar, not geo-engineering — can do that.  How does the special child, who is bullied for her specialness, survive? By pretending she’s ordinary. As good as — but no better than! — coal, natural gas or renewables.”

And it is this pretending that needs to stop.  There is no longer a need to be defensive when supporting the nuclear option.   Or as stated by the Department of Energy in the USA“…  we’re particularly proud of the contributions being made by the nation’s nuclear power plants. Nuclear is, in short, a clean, constant, and downright cool energy resource. Unfortunately, many people may not understand how remarkable this unique energy source truly is, or the role that it plays in our energy portfolio and Americans’ daily lives.

We are at a crossroad.  The time has come to strongly support the best technology that can reliably meet the energy hunger of the world and we need to make it known to policy makers everywhere.  Making energy policy on a hope and a dream is no way to plan our energy future.  Nuclear power is the only true path to a low carbon future with the vast amount of energy needed to fuel the world that is both economic and reliable – and yes safe.  If we work hard to support the facts, the truth may yet prevail.  Or as stated by Michael Shellenberger – Nuclear is special – let’s say it loud and let’s say it proud!

A strategy for nuclear communications – listen

Not a day goes by when we don’t read something about the public acceptance problem in the nuclear industry.  A recent article preaching the end of the nuclear era had a pretty strong statement that sums up like this – “Nuclear looks ever more like a 20th-century dinosaur, unloved by investors, the public, and policymakers alike.”  While I don’t believe this is actually the case, I am sure that many in the public would not find much to fault with it.  And that is the challenge we face.

For more than 30 years we have been hearing that the public just don’t understand the nuclear message – that we need to better educate them – and that while we are all smart folks we are very bad at communicating.  Yawn……

As an industry, we pride ourselves on maintaining detailed OPEX from around the world and learning lessons to foster continuous operations improvement.  Yet, while there has actually been a lot of recent good work on communicating with the public, in this non-technical area we are much slower in leaning the lessons we need to learn.

Beliefs about nuclear power are well entrenched in society.  Most of the concerns come from its weapons origin and a significant fear of radiation that will not just go away with a simple explanation or better education.

This fear translates into fears about nuclear power plants.  It is a common belief that we are safely operating doomsday machines.  i.e. that a nuclear accident can have such far reaching consequences that it can literally destroy the world.  If that is one’s belief how can you convince him or her to support this technology? Talking about low probabilities is of little interest when the perceived consequence is so dire.

Yet, there is hope.  There is generational change coming and this new generation is not afraid of technology, but rather sees it as the solution to everything.  They have other issues on their minds such as climate change – they likely don’t think much about nuclear power at all.

In our home country of Canada, a recent small study shows very interesting results.  Without any scene setting, a simple question on whether the public is in favour of nuclear power shows about a fifth in favour, a third against and the most, about half in the undecided column.  This probably demonstrates that nuclear power is not a top of mind issue for many Canadians.  However, what is important about this study is that once the question is asked again, if prefaced by some scenarios providing information – such as today nuclear provides 17% of electricity in Canada but less than 1% of carbon emissions; or that Canada has more than 50 years of operating nuclear plants safely; or that small reactors may provide much needed energy to help in Canada’s remote communities; then the result is quite different.  The chart below suggests that given a positive reason to think about nuclear power, people are likely to change their view with support growing and opposition declining.  The lesson here is that people can be open to a new discussion about nuclear power BUT this must be on the basis of them considering that it is a possible solution to an issue of relative importance to them.

Or to be more clear, the first step is not trying to reduce the fear of nuclear.  Without giving people a reason to listen you may as well be talking to yourself.  What is needed is to LISTEN, understand what issues are important to the public and demonstrate that nuclear power is a possible solution.  Whether their issue is climate change, energy poverty in the far north, energy innovation, high quality job creation, or just electricity reliability; it is only by addressing these issues that there will be an appetite for listening to us to find out more.

A great example is the group Environmental Progress in the USA.  Here is a world renown life long environmentalist, Michael Shellenberger, taking up the fight to support nuclear power as a tool to meet environmental goals.  I don’t know Michael personally but I would guess that he didn’t just wake up one day with a huge aha moment and decide nuclear power is a fantastic technology that he wanted to support; but rather he looked for solutions to what is important to him, the environment. This is clearly set out in the EP mission – “Nature and Prosperity for All – Environmental Progress (EP) was founded to achieve two big goals: lift all humans out of poverty, and save the natural environment. These goals can be achieved by mid-century — but only if we remove the obstacles to cheap, reliable and clean energy.”  I expect that over time, in his quest to improve the environment, he came to consider nuclear as an option and became open to listening and learning more about whether this option would help to achieve these goals.

I have read many of the posts by EP and they are excellent.  But what is of interest to me as an industry person is that the arguments being made in support of nuclear power are not new.  In fact, they are mostly the same arguments we have been making for the more than the 35 years we have been in this industry.  So, what has changed?  The dialogue.  Once there was a clear goal that is not directly about nuclear power, there became an openness to learn more about those options that can help meet that goal.  And then the facts can be discussed and as we know, the facts tell a good story.

What do we learn here?  We have a huge opportunity today to change the discussion about nuclear power, but the first step is to stop and listen.  It’s not about talking about safety and the LNT model for radiation protection; it’s about understanding the issues of importance to a new generation and then having a conversation to show that nuclear can be part of the solution.  Just trying to educate has taken us nowhere.  But once we listen, then we can expect others to open their minds and listen too.  Only then can we say that nuclear power is not a 20th – century dinosaur; but rather is a technological wonder able to produce the huge amounts of clean reliable energy required for the 21st century and beyond.

Note: This is one of a series of posts to engage in a healthy discussion on public acceptance and nuclear advocacy.  As we think about these issues we would like to point out an excellent book by Meredith Angwin, “Campaigning for Clean Air: Strategies for Pro-Nuclear Advocacy”. If you are at all interested in nuclear advocacy, this is a must read.

In an era where facts no longer matter, consequences still do

Over the last few years, we have written extensively about the strength of peoples’ beliefs and how difficult it is to change them.  In spite of this, I thought we were making progress with a push to more evidence-based decision making.  For something as polarizing as nuclear power, facts-based decision making is critical to increasing support.  (I understand the paradigm of fear of radiation is more emotional than fact based and I agree that we need to appeal to emotions to create the change we need – but let’s leave that to a future discussion.  In any case it certainly doesn’t hurt to have the facts on your side.)

With the populist surge in 2016 we have seen an accompanying rise in complete disregard for facts; all the way to the propagation of absolute lies (or “alternative facts”) to support peoples’ beliefs.  I don’t want to get into a political discussion nor take sides on right versus left.  What I do want to do in today’s post is to discuss something more fundamental – i.e. that although we are free to believe what we want – that beliefs have consequences – and that consequences matter.

So, let’s look at what happens when countries believe they can eliminate nuclear power from the mix and replace it with more wind and solar power.  Of course, I am talking about Germany.  Reducing carbon emissions is a reasonable goal as evidence (alternative facts notwithstanding) shows that climate change is impacting our environment and has long-term implications for our entire society.  On the other hand, removing a low-cost low-carbon source of energy like nuclear power because of safety concerns is based on a strong element of fear rather than evidence.  In fact, Germany’s nuclear plants are likely some of the safest in the world and there is no reason to suspect they will result in a catastrophic accident that means the end of Germany as we know it – yet that is what people fear.

So, what happens in a case like this?  The results are in.  Fossil fuel use is increasing in Germany, carbon emissions are going up and so is the cost of energy.  The German people are paying more money for an outcome that does more damage to the environment and hence, their health.  Frankly, it’s a high price to pay for the piece of mind that comes from eliminating the perceived risk of nuclear.  Or in other words, the extreme fear of nuclear is driving policy more than concern for either energy cost or the environment.

As shown above, closure of another nuclear plant in 2015 resulted in increased emissions in 2016 (the first full year it was out of service) even though there was a substantial substitution of gas to replace coal.

And after adding 10 percent more wind turbine capacity and 2.5 percent more solar panel capacity between 2015 and 2016, less than one percent more electricity from wind and one percent less electricity from solar was generated in 2016.  So, not only did new solar and wind not make up for the lost nuclear, the percentage of time during 2016 that solar and wind produced electricity declined dramatically.   And why was this the case?  Very simply because Germany had significantly less sunshine and wind in 2016 than 2015.

This analysis was done by Environmental Progress and shows that the intermittency of these renewable sources of electricity both throughout the day and from year to year mean that even huge increases in capacity of these forms of generation will continue to require fossil backup in the absence of nuclear power making 100% renewables an unachievable goal.  Another study shows that to achieve a 100% renewable system in Germany would require a back-up system capable of providing power at a level of 89% of peak load to address the intermittency.

Comparing Germany to France, France has more than double the share of low carbon energy sources and Germany has more than twice the cost of energy as France.

So, trying to decarbonize by also removing nuclear from the mix at the same time is simply too high a mountain to climb.  The following shows that German emissions were 43% higher in 2016 without the nuclear plants that have been already shut down.  Keep in mind that they still do have operating nuclear and with more plants to shut down, the future trend is not likely to change.

It’s not just about Germany.  As Japan struggles to get its nuclear plants back on line after the 2011 Fukushima accident, its use of coal has skyrocketed.  In 2015 its use of fossil fuels for electricity generation was 82% compared to 62% in 2010 when the nuclear plants were in operation.  And now Japan plans to build 45 new coal plants (20 GW) over the next decade to meet its energy needs.

Finally, we can also look at South Australia, a nuclear free zone.  Recent blackouts due in part to lower wind availability and the inability of thermal plants to make up the shortfall are also leading to questions on ‘how much renewables is too much’.

So, we can all continue to hold our beliefs very dearly and only listen to those that support them, while vilifying those that do not.  However, please keep in mind that in a world where the farcical becomes reality, results still matter.  And for now, the results are clear, taking nuclear power out of the mix in Germany is not achieving its political-planners’ goals.  Yet these results are also not likely to change any German minds when it comes to nuclear power.  But hey, why worry about the outcome when you know you are right or as said by comedian Chico Marx in the famous Marx brothers movie Duck Soup “Who you gonna believe – me or your own eyes?”?

2016 was a challenging year for nuclear power – or was It?

There is no shortage of people happy to see 2016 come to an end.  It has been an extraordinary year characterized by strong popular revolt to the status quo resulting in unexpected government changes in places like Britain and Italy and a surprising result in the US election.

For those of us in the energy industry it has also been a challenging year.  Oil prices have remained low depressing economies supported by oil.  North American gas prices seem to have no bottom and these historic lows have led to dysfunction in electricity markets.  This coupled with highly subsidized prices for renewables has resulted in tremendous economic pressure on American nuclear plants with a number of them closed and more slated for early closure.  The most recent was just this month as Entergy announced that Pilgrim would be closed early in 2018.

In other countries, Japan continues to struggle with bringing back its nuclear fleet in a timely manner; South Africa seems to have postponed the bulk of its nuclear plan; and Vietnam cancelled their nuclear projects outright.

What makes these changes of more concern is that on the surface they are said to be a result of challenging nuclear economics rather than any specific anti-nuclear attitude.

But all this negative pressure also helped to put the need for nuclear in perspective.  More and more countries have accepted that meeting climate goals will require continued use of nuclear power.  Its 24/7 reliable low carbon generation can be the back bone for a healthy economic low carbon world.  As shown by the IEA in their World Energy Outlook 2016 (WEO) in the figure below, there is strong growth expected for nuclear in the New Policy Scenario (base case) and that the number of nuclear plants will have to more than double for their 450 (low carbon) scenario.

Source: World Energy Outlook 2016

While the press has been consumed with the challenges, there has been a string of good news for the sector this year.  In Britain, there was a final commitment to the Hinkley Point C project and in Switzerland the early closure for their nuclear plants was strongly rejected in a referendum.  In the United States, while the focus was on the plants that have closed and that may be closing both Illinois and New York states have taken government action to keep their plants open recognizing their essential contribution to both the local economies and to their carbon emissions targets.  Also in the US, Watts Bar 2 came into service as the country’s first new nuclear plant in more than two decades.  And so far, it looks like the incoming administration, while not necessarily on the side of combating climate change, will be supportive of nuclear energy going forward.

Here we are; another year has come to an end and once again it has been a tumultuous year for nuclear.  But overall, I believe it has been positive and we are well placed for 2017.  There is a broad recognition of the importance of nuclear to meet climate change targets and there is a better understanding of the problems with market structures in supporting low carbon economic generation that is needed.  All of this without even mentioning China which continues with its strong nuclear expansion.

One thing is clear.  The world needs more nuclear if we are to have a reliable secure low carbon generating system.   With the IEA forecasting a doubling of plants in the next 25 years, we had better get on with it…….

Thank you for continuing to read this blog – wishing you all a very happy, healthy and prosperous 2017.

Want to minimize radiation from power generation – build more nuclear

Yes, you read that right.  For years, there have been efforts to demonstrate that people who live near nuclear plants or work at nuclear plants are getting sick from all that darn radiation they are receiving.  Over the years these stories have been debunked as study after study has shown that there is no impact from radiation from living near or working at a nuclear plant.

But now a study has been done that shows that of most of the options to generate electricity, nuclear actually releases the least amount of radiation.  This is documented in UNSCEAR’s, the United Nations Scientific Committee on the Effects of Atomic Radiation, most recent report to the United Nations General Assembly, on its study to consider the amount of radiation released from the life cycle of different types of electricity generation.

The Committee conducted the comparative study by investigating sources of exposure related to radiation discharges from electricity-generating technologies based on nuclear power; the combustion of coal, natural gas, oil and biofuels; and geothermal, wind and solar power. The results may surprise some, especially those that strongly believe that nuclear pollutes the earth with radiation, coal with a range of air pollutants and carbon, and that solar and wind are environmentally wonderful.

solar-panels-and-wind-turbines

Coal generation resulted in the highest collective doses to the public, both in total and per unit energy.  Coal radiation emissions result from coal mining, combustion of coal at power plants and coal ash deposits.  The study also considered occupational doses to workers.  Here is the biggest surprise.  As stated “With regard to the construction phase of the electricity-generating technologies, by far the largest collective dose to workers per unit of electricity generated was found in the solar power cycle, followed by the wind power cycle. The reason for this is that these technologies require large amounts of rare earth metals, and the mining of low-grade ore exposes workers to natural radionuclides during mining.”  It is important to note that in all cases these levels of exposure are relatively low and have little impact to public health.

This study only addresses normal discharges during the lifecycle of the station.  Possible larger releases as a result of nuclear accidents are not considered and we recognize that many will argue it is accidents and their consequences that create the largest fear of nuclear power.

So why talk about this?  The reality is that this information is not likely to change even one single mind on whether someone supports nuclear power or fears it.  We live in a world where facts no longer matter – the only truth is the one that any one person believes.  Well, we believe that scientific study remains the best way forward to establish truth and that studies such as these are part of the path forward.  No one electricity generation technology is perfect.  Coal is cost effective and technically strong, but is also a strong emitter of a range of pollutants (including radiation); renewables such as solar and wind are clean but their resource is intermittent and they have issues with both their front end (mining of rare earths) and disposal at the end of their life cycle.

Nuclear power continues to have a good story to tell, with respect to its economics, reliability, environmental attributes and the many good jobs it creates for local economies.  Concerns about nuclear relate mostly to one major issue – fear of radiation.  And fear is a strong emotion that is not easily changed.  But at least what we have here is another study to show that radiation emissions from normal operations of the nuclear fuel cycle is not something to fear – and in fact if you really want to minimize the collective dose to the public, nuclear power remains the option of choice.

Fighting for the environment – keep nuclear in the mix

Earlier this month I enjoyed a week of vacation sitting on the beach in front of a beautiful camp (or cottage, cabin or country house, depending on where you are from) staring at a stunning view of the north shore of Lake Superior, the world’s largest fresh water lake.  This is pretty far north (at the 49th parallel), and this year the summer has been very hot.  Once again, July has been the hottest month ever recorded.

Environment

It’s times like this of quiet reflection that the issue of environment comes to the forefront.  Contrast this idyllic view to that of some of the world’s cities where pollution is rampant and health is impacted every day.  This is the short term need – make the air breathable for all those that are having their health impacted negatively by pollution primarily coming from burning coal to generate electricity and from burning fossil fuels in cars each and every day.  And then there is the issue of climate change.  Harder for many to understand as the consequences are not as easy to see in the short term; but clearly the environmental issue of our time.

Let me start by saying that I am not one of those people that believe we should directly tie the future of nuclear power to climate change but rather that the case for nuclear needs to be made on its merits – reliability, economics, sustainability and yes, its environmental attributes.  In fact, today environmental attributes of any generation technology should be the price of entry – low carbon and low polluting technologies are the ones that should make the list to be considered for deployment.   However once on the list it is the other attributes that need to be considered when planning and implementing a robust electricity supply system.

Looking at this beautiful view, I find it hard to understand how so many are trying to disadvantage the environment by excluding nuclear power from the list of technologies that are environmentally friendly.  And not just for new generation, but many are fighting to close existing plants that have been providing clean, economic and reliable electricity to the grid for decades.  Examples abound.

In California, a decision was recently taken to shut down Diablo Canyon in 2025 rather than extend its life and replace it with renewables and demand management.  This decision has recently been severely criticized by Dr. James Hansen, one of the world’s most prominent climate scientists who has asked the Governor for a debate on the issue stating “Retirement of the plant will make a mockery of California’s decarbonization efforts. Diablo Canyon’s yearly output of 17,600 gigawatt-hours supplies 9 percent of California’s total in-state electricity generation and 21 percent of its low-carbon generation. If Diablo closes it will be replaced mainly by natural gas, and California’s carbon dioxide emissions will rise…” [Read the entire text of the letter here]

In New York state there has been an important victory as nuclear has been included in the clean energy standard as legislators have acknowledged the important role that nuclear plays in reducing carbon emissions; and in fact accepts that meeting carbon objectives is simply impossible without nuclear.   However, this is just a first step. It protects existing nuclear but also maintains the future target of 50% renewables, making nuclear a bridge to the future.  Well if existing nuclear is good, then so should new nuclear – but that fight is for another day.

Of course the battle to include nuclear as a low carbon energy option is not uniquely a US issue.  A new study * by the University of Sussex and the Vienna School of International Studies suggests that “a strong national commitment to nuclear energy goes hand in hand with weak performance on climate change targets”.  While the authors do note that “it’s difficult to show a causal link”, this does not stop them from suggesting it is likely there.   It is easy to say that Germany has done a good job and reduced its carbon emissions by 14% since 2005.  What is not said is that Germany’s carbon reduction efforts have really struggled since it closed a number of nuclear plants in 2011 after the Fukushima accident and has yet to get back on track; which was likely a key factor in Sweden where the Greens have accepted the need for continued nuclear operation to meet its climate goal.

Here in my home jurisdiction of Ontario Canada, we had the largest carbon reduction in all of North America as coal was removed from the generation mix in 2014.  This was not done by replacing coal with renewables although renewable generation has increased, but was made possible by refurbishing and returning nuclear units into service.

I have written extensively about peoples’ belief systems over the years and this is what is standing between nuclear and success.  Ask anyone in the street about clean electricity and you will hear that renewables, primarily wind and solar, are what is needed to transform our energy systems.  Ask about nuclear and the response is much more likely to be mixed.

It is great news that many environmentalists are now seeing the necessity of nuclear in the mix.  As concluded by James Hansen in his letter” It would be a tragedy if we were to allow irrational fear to harm the climate and endanger the future of our children and grandchildren.”  So if we are to avoid a tragedy, we in the nuclear industry have a lot of work to change the narrative and continue to increase public support.  The agreement in New York is a good beginning but the hard work has only just begun.

* The study referenced above was retracted by the authors on November 25, 2016 as they admitted mistakes in the analysis.  The link to the retraction on Retraction Watch is here.

Dreaming of a future with abundant clean reliable energy – then dream about nuclear

When we look to the future, people the world over are hopeful for an era of abundant reliable electricity supplying all of our energy needs; all at a reasonable cost and with little to no impact to the environment. Unfortunately, in many western countries the politics of electricity planning has become largely a case of exploring the depths of our imagination with no real path to achieving this essential goal.

As stated by Malcolm Grimston at the World Nuclear Association (WNA) Annual Symposium last month in his brilliant talk “Sclerosis at the heart of energy policy” (in advance of a book he has coming out), we have become so accustomed to reliable and cost effective electricity supply that we can no longer ever consider a scenario where this can be at risk. He noted we even use the less than frightening phrase “keeping the lights on” when talking about reliability which greatly understates the importance of reliable electricity supply to our modern society. (As he said, he turns out his lights every night without concern – certainly a large scale disruption to our energy supplies would be much worse than having the lights go off.)

Given we can’t imagine electricity reliability to be at risk; and given we have relatively slow growth in most western advanced economies there is a major reluctance to take decisions to protect and invest in our infrastructure for the future even while we want to work towards decarbonizing the system. Yes electricity demand growth is modest, but our lives depend more on reliable electricity supplies than ever before. Without electricity society quickly becomes paralyzed with no ability to communicate, travel, maintain our food supply, sanitation, deliver health care and so on…in fact it is very difficult for us in all of our modern comfort to imagine how severe the consequences would be. Therefore in our great complacency we continue to do nothing because we all expect that the next great technological breakthrough is just around the corner. All we need to do is wait and advanced renewables will be available so we can have clean limitless energy forever. And so goes the narrative.

Ben Heard in his excellent WNA presentation “World without Nuclear” quotes Naomi Klein as she spoke to the media against the nuclear option in South Australia – “What’s exciting about this renewables revolution spreading around the world, is that it shows us that we can power our economies without the enormous risk that we have come to accept”. She said the latest research showed renewables could power 100 per cent of the world’s economies. “We can do it without those huge risks and costs associated with nuclear so why wouldn’t we?” she said.

But of course if it sounds too good to be true, it probably is. Ben’s presentation goes on to review 20 studies that suggest that a world powered by 100% renewables can be a reality. However, in his review he rates most of these studies as poor. Overall he concludes that there is actually scant evidence for 100 % renewable feasibility while the literature affirms large dispatchable, i.e. guaranteed 24/7 supply is indispensable. His final conclusion is that global decarbonization requires a much faster-growing nuclear sector.

Fast Decarbonization

Reproduced from Agneta Rising Presentation at the WNA Annual Symposium 2015

But how can we have more nuclear when it has this perception of huge risks? We have written extensively on the issues associated with the perception of nuclear as a dangerous technology when in reality it has the best safety record of all technologies out there so we won’t talk about that again now. In his presentation Malcolm Grimston places much of the responsibility for this public perception squarely on the nuclear industry noting that the industry “spends half of its time implying that it is the new priesthood, with superhuman powers to guarantee safety; and the other half of its time behaving as if radiation is much much more dangerous than it actually is.” While it is hard to know what comes first, the fear or the industry reaction to it, we certainly agree that Malcolm makes a good point.

Then there are those that say nuclear power is way too expensive to be part of our future electricity system even though there is no doubt that wind and solar power are clearly the more expensive options. The most recent edition of “Project Costs of Electricity”; an important report that is now in its 8th edition from the IEA and NEA looking at the costs of various forms of electricity generation has just been published. (This report is a must for anyone seriously looking at trends and costs of electricity generation around the globe.) While the report acknowledges the huge gains made by renewables in reducing their costs, it also demonstrates that nuclear power is one of the lowest cost options available depending upon the scenario. Of more importance, the report notes that the belief that nuclear costs continue to rise is false stating that, in general, baseload technologies are not increasing in costs and specifically “this is particularly notable in the case of nuclear technologies, which have costs that are roughly on a par with those reported in the prior study, thus undermining the growing narrative that nuclear costs continue to increase globally”.

We will have more to say about this report in upcoming posts. But for now, let’s all do more than dream about a future of abundant, reliable, clean and yes, economic electricity; let’s make this dream a reality by making sure that the electricity system of the future includes highly reliable 24/7 nuclear power.

Reliability means being connected – we need a strong integrated electricity system with nuclear generation as its workhorse

It was with great fanfare that Tesla launched its home battery recently.   Headlines like “Tesla launches Powerwall home battery with aim to revolutionize energy consumption” were the norm as the public read about this revolutionary jump forward in energy storage. A recent article on where famed author Margaret Atwood is investing says it all …. “if [Tesla CEO] Elon Musk was putting his Powerwall on the market, I would certainly buy a piece of that. My feeling is that, once that becomes affordable, everyone is going to do that. I think that’s definitely the wave of the future.”

After all, this is the dream isn’t it? We can all generate our own electricity with clean energy efficient solar panels and store enough on our home batteries to keep us going when the sun goes down. What can be better for our common future?

Well, in fact, just about everything.

It must be my age and my years in the energy industry that remind me of what are the real essential attributes of electricity supply. Reliability and Economics. Yes, that’s right. For anyone who works in a modern electricity utility, that is what they focus on; delivering cost effective reliable electricity to users. And in today’s energy intensive world where we need electricity for every aspect of our hyper active and energy intensive lives, this is even more critical. We have all experienced temporary blackouts and know well the negative impact it has. The problem then with renewable energy generated at home is that, at least for now, it is neither reliable nor economic. Since the announcement from Tesla there have been a number of articles that explain this in detail, but of course supporters will just say that in time all problems will be solved. And frankly they may be right.

solaratnightv1

So let’s step back and ask ourselves a more important question – are we trying to solve the right problem? Most people have no idea what it takes to generate and deliver the electricity (the so-called “grid”) we take for granted in the modern world. In fact, many just think electricity is something that comes out of the wall outlet. What we all want is that when we turn on the switch, or plug in our phones, it just works. We are not in any way prepared for a world in which we say – oh, it’s cloudy so we better not charge our iPhone today! I love the recent TV ads where BMW is explaining how they build their new I3 electric car in wind powered factories. Yet, do any of us really think that on days when it is not windy, these factories sit idle? No, of course not.

In most advanced economies around the globe we have achieved a high level of reliability in electricity supply. In fact this is one of the measures that makes an economy ‘advanced’. The problem is that much of our electricity is generated with fossil fuels; primarily coal. (Coal continues to be the largest source of Germany’s electricity where BMW has its factories, at nearly 50% of total supply). And along with this comes both pollution and a high level of carbon emissions. Therefore, the only way to address these environmental issues is to reduce the use of fossil fuels, not to eliminate an integrated grid.

Just like being connected to the internet improves our lives, so does being connected to a reliable electricity grid. Do we really want to live a life where if it is cloudy for a few days and our batteries run dry we do without? Of course not. Just imagine how much excess battery capacity we would each need to avoid this possibility. Even Elon Musk notes that his battery is currently for emergency backup – not for daily use – and yes it would be great to have some amount of reasonably economic backup for when we experience an outage. But as is starting to be seen in California where there are numerous discussions of the “duck curve”, people want it all – they want to generate their own electricity when they can believing this is the best approach, but they also want the system to be there just in case they need it; and at a moment’s notice. The result – higher costs all around. The less the grid system is used, the more it costs to keep the infrastructure in place to make up the shortfall when needed.

The answer is simple, let’s take what works and make it even better.  That is a large interconnected grid that includes large scale reliable economic generation based on nuclear power, and hydro where available, supplemented by wind and solar depending upon the local availability of these resources. To be reliable and cost effective, a system needs generation that can run all the time, not just when the wind is blowing or the sun is shining. As storage technology improves, it can then contribute to both help manage the intermittency of renewable generation as well as flattening the demand curve to enable an even larger share of nuclear generation.

Remember, our economy, and in fact our very way of life, is completely dependent upon the availability of reliable, clean and economic electricity. So while we may dream of not needing the grid as we each generate our own electricity, what we really need is a strong well interconnected grid made up of reliable economic nuclear power as its work horse, with wind, solar and other forms of generation contributing when they can; all coupled with new forms of large scale storage to both even out demand and supply. Now this is more likely to be the system of the future.

It’s time to put nuclear on the offensive – and make it the low carbon energy generation option of choice

Have you ever seen something that just amazed you? We were wowed by a recent YouTube video showing what the Chinese have achieved in turning conventional high-rise construction on its head. A 57 story building was built in 19 days – yes – 19 days! Who would ever believe this could be possible? I live in Toronto, a city that has been undergoing a huge hi-rise building boom over the last few years and the time it takes to build these tall towers can be measured in months and years, not days. This just shows what can be achieved when the imagination is let loose and innovation results in outcomes never before thought possible.

We first wrote about the importance of innovation in the nuclear sector last year. In its history nuclear power has shown incredible innovation, leading the way in a range of technologies especially with respect to delivering a level of safety and security not seen in any other industry. More recently there have been dramatic improvements in operations as the global fleet has reached a level of performance never even dreamed of in the early days of the industry. Current new build projects are using the most up to date methodology in modularization and other advanced construction techniques.

And yet when the IEA issued the 2015 version of its Energy Technology Perspectives (ETP 2105) report focusing on the need for energy technology innovation if the world is to address climate change; it doesn’t mention this innovation, nor does it include discussion of potential future innovation with respect to the nuclear option.

As stated, “Energy technology innovation is central to meeting climate mitigation goals while also supporting economic and energy security objectives. Ultimately, deploying proven, cost-effective technologies is what will make the energy system transformation possible. Continued dependence on fossil fuels and recent trends such as unexpected energy market fluctuations reinforce the role of governments, individually and collectively, to stimulate targeted action to ensure that resources are optimally aligned to accelerate progress. Establishing policy and market frameworks that support innovation and build investor confidence over the long term is a first-order task to deliver.”

The report is clear when it says that “Innovation support is crucial across the low-carbon technology spectrum”. The discussion focuses on renewable technologies in the short term due their relative readiness and lack of a need for long term investment in development; and carbon capture (CCS) in the medium to longer term even though it requires substantive investment in development as it remains essential to address the large number of fossil plants being built and still in operation by 2050 that will require decarbonizing.

As usual, the same issues that have plagued nuclear for the last 30 years; primarily public acceptance issues, mute a positive discussion for the nuclear option. While recognizing its importance in achieving increased energy security, diversity of fuel supply and lower emissions, the report goes on to state “this awareness has yet to be translated into policy support for long-term operation of the existing fleet and construction of new plants” … “to recognize the vital contribution that nuclear energy can make.”

Yet the actual IEA scenarios have changed little from last year. As shown below, when considering technologies individually (rather than grouping into “renewables”), nuclear actually plays the largest role of any single technology in meeting carbon reduction targets showing that, even as it is stands today, the nuclear option is absolutely essential to moving to the IEA 2 Degree Scenario (2DS).

ETP2015

This can only be the case if nuclear is currently meeting its responsibility to be economic and reliable while being an essential large scale low carbon option. Given that we know the largest challenges in building new nuclear plants is related to their relatively high capital costs and long project schedules relative to other options; consider the role nuclear can play if improvements similar to those demonstrated in the Chinese YouTube video were implemented. Not marginal improvements, but mind blowing changes in approach that shake current thoughts about the costs and schedules of nuclear projects to their very core. This is the way forward. While discussion of next generation plants and SMRs is of interest, we need continued innovation that takes what we know now and improves it beyond what anyone can imagine.

The report shows that government investment in nuclear R&D has been dropping and in renewables has been increasing. This investment must be refocused on project improvement and innovation rather than the traditional areas of research such as safety and waste management where it has been spent for decades. While important for the nuclear industry, too much of this spending is focused in these areas just to pander to the ongoing public beliefs that safety and waste issues remain unresolved. Rather, emphasis should be on continuing to improve new build project performance. Let’s think about new build nuclear in the same way we think about renewable technologies; that more investment and research will lead to shorter construction schedules and lower costs. It is time to let the innovation genie out of the bottle, stop being on the defensive and move forward with great things. With changes like this, the nuclear share will grow well beyond current expectations bringing a real solution to climate change while keeping electricity bills low and system reliability high.

So remember, nuclear power is essential in achieving increased energy security, diversity of fuel supply and lower emissions; and is already expected to have the largest impact on meeting climate goals of any other single technology. Today’s plants are economically competitive and provide safe and reliable electricity. Talking about investing in energy innovation without a discussion of investing in nuclear, when it’s currently the best option available, is absurd. Governments need to recognize the incredible innovation already achieved by the nuclear option, and unleash even greater potential by investing in this well proven technology.